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ON THE SEGMENTATION AND ANALYSIS OF CONTINUOt1S 

MUSICAL SOUND BY DIGITAL COMPUTER 

(ABSTRACT) 

James Anderson Moorer, Ph.D. 

Stanford University, 1975 

The problem addressed by this dissertation is that of the transcription of musical sound by 

computer. A piece of · polyphonic musical sound is digitized and stored in the computer. A 

completely automatic procedure then takes the digitized waveform and produces a written 

manuscript which describes in classical musical notation what notes were play~d. We do not 

attempt to identify the instruments involved. The program does not need to know what 

instruments were playing. 

It would appear that it is quite difficult to achieve human performance in taking musical 

dictation . To simplify the task, certain restrictions have been placed on the problem: (1) The 

pieces must have no more than two independent voices. (2) Vibrato and glissando must not be 

present. (3) Notes must be no shorter than 80 milliseconds. (4) The fundamental frequency of a 

note must not coincide. with a harmonic of a simultaneously sounding note of a different 

freq uency. The first three conditions are not inherent limitations in the procedures, but were 

done simply for convenience. The last condition would seem to require more study to determine 

the cues that human listeners use to distinguish, for example, notes at unison or octaves. 

NumeroLis other lesser restrictions were also imposedon the music to be analysed. 

The method used for this analysis is a directed bank of sharp-cutoff bandpass filters. First, a 

pitch detector is used to determine the harmony of the piece at each point in time. Using' the 

harmony information, the frequencies of a band of bandpass filters is determined so as to 
assure that every harmonic of every instrument will pass through at least one of the filters . 

The output of each filter is processed by a pitch detector .and an energy detectC!r. This gives 

power and frequency information as functions of time. Each power and frequency function 

. pair is rated as to its quality. The rating takes into account the constancy of the frequency 

function, the smoothness of the power function, and several other measurements on the 

functions. This rating is used to elimin.ate spurious traces and null filter outputs. 





Notes are then inferred from groups of power and frequency function pairs that occur 

simultaneously with frequencies that are harmonically related. Notes with higher overall ratings 

are preferred over other note hypotheses. The melodies are then grouped by separating the 

notes into the higher voice and the lower voice. Voice crOSSings are not tracked. For the final 

manuscripting. Professor Leland Smith's MSS program was used. The analysis program 

produces diliectly input for the manuscripting program. thus the entire procedure is automated. 

In addition to the above described system. many other techniques were examined for their 

utility in this task. Each techniq ue that was explored is described and analysed. with a 

description of why it was not found useful for this task. 

One interesting pbservation is that there is considerably more activity in a piece of music than· 

is perceived by the Iistner. This is especially common with stringed instruments. because the 

strings that are not being manipulated invariably resonate and produce sounds independently 

which are generally not heard due to aural masking. This indicates that perhaps we should use 

more perceptually-based techniques to help determine what would actually be heard in a piece 

of music. rather than determine exactly what is there, although detailed descriptions of the 

contents of·the piece may be useful for other purposes, such as music education or musicology. 

In general. the system works tolerably well on the restricted class of musical sound. Examples 

are shown which demonstrate the viability of the system for different instruments and musical 

styles. Since the procedure is extremely costly in terms of computer time. only a limited number 

of examples could be processed. These examples are discussed with a description of how the 

system could be improved and how the restrictions might be eliminated by better processing 

techniques. 
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PROBLEM STATE,HENT 

INTRODUCTION 
ST A TEMENT OF THE PROBLEM 

The problem addressed by this dissertation is the machine perception of polyphonic music. We 

seek to play a pie~e of music into the computer via an analog-to-digital converter and have the 

computer return an abbreviated score of the piece. In order to simplify the task, certain 

restrictions have been placed on the goals. First, we do not reqUire the computer to identify the 

instruments involved . Second, we do not allow glissandi, fast trills, or exceptionally fast notes 
(less than 100 milliseconds duration). Third, the class of instruments that we will accept is 

limited to a subset of the orchestral instruments which excludes drums, gongs, cym)Jals, and 
other instruments with inharmonic overtones. Fourth, vibrato must be non-existent or very 

limited . Fifth, the program will only be expected to track a .small ,number of independent voices 
(two at most). Sixth and last, we must disallow notes such that the fund·amental of one note is 
at the same frequency as a harmonic of another note. This rules out notes at octaves, at 

twelfths, and many 'other intervals. Some of these restrictions represent inherent limitations in 
the methods used and some merely represent restrictions for the sake of economy. A discussion 
of each restriction will accompany its intoduction. 

In performing this task, there are some things that we may reqUire of the computer that we 
would not reqUire of a human . One is that the pitches be identified with the actual note 
relative to the equal tempered scale based on Ai being 440 Hz. This would reqUire the skill of 
"absolute pitch" which is somewhat rare even among trained musicians. Conversely, there are 

sorne things which people do quite well that we cannot at this time reasonably ask the computer 
to do, such as identify the instruments involved. The reasons why this is a difficu It prob lem 

wi II be treated later. 

A computerized ' musical scribe probably has its greatest . application in the field of 
Ethnomusicology, where often hundreds of hours of recorded ethnic music are commonly 
transcribed by hand. A more long term application is in the field of computer music, where we 
might ex pect the computer to be able to perceive music as well as play it, thus taking its cues 
from the musicians (or other computers?) with whom (which?) it is playing. 



INTRODUCTION , 2 

ON l\1USIC ANALYSIS 

Mu sic m a y be analysed for any number of purposes. There is analysis of a score for form, 

motifs, harmony. style, etc. These may be termed high-level analyses because they deal with 

con ce pts which are not rigorously defined, nor are they generally amenable to direct 

m a th ematical an a lysis . These analysis techniques are commonly taught to underg'raduate music 

students as reg'ul a r curriculum subjects. Some attempt has been made to use the computer to do 

high -level a nalysis from scores which have been typed in by hand [HilJer 1966, 1967; J ackson 

1967; W illog rad 1968] with some success. Perhaps the greatest contribution of the computer has 

been to th e ethnomusicologist who seeks to classify the intervals or frequencies-of-occurrence of 

motifs . 

A na lysis of the acolJstic waveform itself has been done for the purpose of gaining insight into 

the physics of music-related hard ware (instruments, concert halls, musicians), for the pu rpose of 

simulatio n of rl1LJ s ical tones (a musical "vocoder"), for gaining insight into human perception of 

musical sound, and finally, for the purpose of detecting and tracking the pitch of a single­

voiced pi ece. This analysis might be termed low to intermediate-level analysis because it deals 

with mll s ic Cl I sou nd on a n acoustical level rather than on the level represented by the score of 

th e piece 

It' is . of cou rse, <In impossible task to recreate exactly the score that produced a given piece 'of 

musi c. Wh en we listen to a piece of music, we cannot tell that a given note duration represents 

<l qU<lltcr note. <l h a lf note, or whatever. The composer is free to introduce factors of two in the 

notCition a t will, and the conventions in this respect have changed over the years. A Iso, the 

amount of voice doubling on a particular line is often quite difficult for people to determine. 

Sometimes, a precisely played octave will not be recognized as such . 

It is our intention to finesse these difficulties by restricting the range of pieces that will be 

accepted. With some restrictions. in effect, the problem is manageable. 



WHA T IS MUSICAL SOUND? 

INSTRUMENTS, OVERTONES, AND A 
MODEL OF INSTRUMENT WAVEFORMS 

3 ON'" l./ SIC H N .-1 L}' SIS 

Our model of music will consist of the sound pressure wave created by a finite number of 
instruments that play notes which begin at some time, have a finite duration, and are nearly 

periodic in that interval. For our purposes, an instrument will be defined as something which 

produces nearly periodic sound pressure waves. A note will be defined entirely by its pitch, 
starting time, duration, and loudness. Before we proceed any further, some definitions are in 

order: 

pitch - Pitch is a subjective quality of sound that is not necessarily dependent upon the 
existence of a sinusoid at that frequency. A discussion of pitch perception is offered in 
later sections' (see section entitled Music Perception), so please accept for now that "pitch" 

means what we commonly ,take it to mean, but "frequency" refers to the repetition rate of 
a perfectly periodic signal. "Frequency" is a physical quantity which can be measured 
objectively. "Pitch" is a perceptual phenomenon. 

harmonic - A perfectly periodic waveform can be decomposed by Fourier's sine and cosine 
,series into. a sum of sinusoids whose frequencies are integral multiples of some base 
frequency, which is called the "fundamental" frequency of the sound. These sinusoids 
are described as "harmonically related" sinusoids, or more simply as "harmonics." 

inharmonic - An adjective meaning "not harmonically related." 

partial - Many waveforms are not periodic, but may nonetheless be represented by a sum of 

sinusoids that are not harmonics. The general term for the sinusoids which make up a 
waveform, be they harmonic or otherwise, is a "partial tone," or more simply, a "partial." 

quasi-periodic - This term along with "nearly harmonic" applies to waveforms which are not 
perfectly periodic, but are very close. Stringed instruments show some inharmonicity 
due to effective shortening of the string at higher frequencies, but since the deviation is 
just a few percent, they are called "quasi-p~riodic. " 

half-step - This is the square root of a step, or the twelfth root of 2, which is 1.05946309. The 
half-step is the relation between the frequencies of notes which are played on adjacent 
keys on a piano keyboard. The half-step forms the basis of most Western music; , This is 
also the basis of the equal-tempered scale, which is used throughout this thesis. 

step - A "step" is a ratio of two frequencies which is defined as the sixth root of 2 , or 

1.12246205. 



INTf,OfJUCTION 

illtc.;rvaJ - The rel<ltion between the frequencies of two simultaneously sounding notes is called 

an "interva l" . We measure intervals in terms of steps, or half steps. The intervals 

lOn,,,isting; of integral numbers of half-steps have names and special meanings in most 

western music. If the frequency of one n.ote is f 1 and the frequency of the other note is . 

f 2, then the "distance" between those two notes in half-steps is simply 

12* I 092 ( f 2/ f I)' This is the interval those two notes represent. 

~cale - A manner of subdividing a large interval, such as an octave, at definite points in order 

to prov ide a series of tones suitable for melodic or harmonic use, Two common divisions 

of the acta ve in Western music are the major and the minor scales, each of which divide 

the octave into eight notes (including the endpoints). If we number the notes of these 

sca les from the lowest to the highest, the major scale has a half-step between the grd and 

' lth notes , Ctnd between the 7th and 8 th notes, and whole steps between the other adjacent 

notes of the scale, The minor scale has half-steps between the 2nd and 3rd notes a nd 

bet ween the b I hand 61h notes . 

chord - Three or more notes sounding simultaneously. In more common usage, the intervals 

be tween (lei jacent notes is 3 or 4 half-steps (these intervals are called minor and major 
thirds, respectively), A more general term for the simultaneous sounding of three or 

rno re notes without regard for the intervals among them is a "cluster", 

harm Oil)' - This is easy to confuse with "harmonic," but it refers to a subjective musical quality. 

W hen two or more instruments play different notes at the same time, we refer to the 

relation of the notes as the "harmony" of the music, To be more specific, this is actually 

the vertical harmony of the music. We may also define the horizontal harmony to be the 

relations among the chords as a progression in time. In this dissertation, we shall only be 

concerned with vertical harmony, although horizontal harmony is much more important 

musically. 

Music in struments can be divided into many categ'ories, but we shall only distinguish two: those 

th(l t h<lv c nea rl y h a rmonic partials and those that do not. We shall be concerned here with only 

those inst ru ments which have nearly harmonic partials. These instruments can be modeled as a 

slim of sinllsoids with slowly-varying amplitudes and frequencies. The frequenCies of these 

sillllsoicls a re very close to integral multiples of the fundamental frequency of the note. 

W it I! t he a id of the heterod yne filter (see section Heterodyne Filter in Low-Level T echniques ), we 

«'I n ' ;: XR mi I'll" the beh a v ior of the amplitudes ano freq llencies of notes played in isolation , 
: .~ 

With (h e~c data available, we are in a pOSition to test the validity of the model for describing 

the p ercept ually re levant attributes of music instrument tones. We can do this by resynthesizing 

the to nes Clnd comparing them with the original tones. We have done this for the following 

instru m en ts: 
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, violin, viola, cello, double bass, trumpet, trombone, French horn, baritone horn, 
, oboe, English horn, bassoon, Bb clarinet, alto clarinet, bass clarinet, flute, alto' flute, 
alto sax, soprano sax 

The synthetic tones are very similar to the originals. When some white noise is added into the 

synthetic tones to simulate the effect of tape recorder hiss, most of the synthetic tones are 

extremely similar to the original. This affirms the validity of the model and of the heterod yne 

filter for representing this class of instruments. Although we have not done this test on every 

music instrument with nearly harmonic partials, we have no reason to believe that this model 

should not be adequate for representing all such instruments, including the human voice 

(possibly excepting frication). 

That these instruments can be represented in this manner is somewhat curious, because some of 

the instruments exhibit inharmonicity. The heterodyne filter is not capable of detecting 

inharmonicity directly. It would appear that these effects show up as amplitude and frequency 

modulation on some harmonics. Since the sum of twosinusoids is identical to a single 

amplitude-modulated sinusoid, much of the effect of inharmonic partials seems to be captUred 

in the detail of the amplitude and frequency contours for each harmonic. 

A great body of work on music instrument tones in isolation is presented in a companion 

dissertation An E>;ploration of Musical Timbre by John M. Grey [1975]. The heterodyne filter 

was used to analyze a number of different instruments as a method of generating 

psychoacoustic stimuli for studying human perception of timbre. Figures 26 and 27 w'ere taken 

from his work. 



I NTRODUCT ION 6 

ON 1\1USTCAL HARMONY 

Thel'> is 3 well developed body · of harmonic practice which is taught as an undergraduate 

music COUlSI?· [Piston 1941; Forte 1962l This is generally referred to as "classical" or 

"traditional" harmony. Again, there is a difference between "vertical" and "horizontal" harmony. 

We sh~'dl only deal with "vertical" harmony, which does not take contextual information into 

accou nl. 

We s h ,tll di~ClJSS the ,mathematical implications of some aspects of harmony, notably th e chord. 

Till? sirnplf'st chorel is the triad . The triad consists of three notes sounding' simultaneously. ' The 

most .comrnon tri(lc\s are the major triad, and the minor triad . These are defined by the ratios 

of t h e frequencies of the notes in the triad . One simple form of the major triad in "root " 

position h as the nex t higher note (which is called the "third" of the chord) located four half­

steps higher than the lowest note, which is called . the "root" of the chord. The third of the 

chord is so-called because it is the third note of a major scale which begins at the root. The 

hi g h est note of the major triad is called the "fifth" of the chord and is located 3 half-steps 

high e r th3n the third which makes a total of seven half-steps higher than the root. The 

"harmony" of a piece of music can be thought of (in an oversimplified manner) as the 

progreSSion of chords in a piece of music. 

0 1"1 (' of th e thin gs that makes music interesting is the fact that we may shuffle the notes of a 

chord lip o r clown by some number of octaves and still have the same (in a certain sense) chord . 

Th!?re are names for many of the arrangements of notes that define a given chord. For instance, 

if th e thire! is the lowest note in a chord, the fifth the next higher, and the root the highest , the 

chord is sa id to be in the "first inversion". Likewise, if the fifth is the lowest, the chord is in 

th e "second inversion". This discussion is a bit oversimplified, in that the inversion of a chord 

depends on lyon the lowest sounding note. For instance, a chord can still be in root position if 

the third of the chord is raised an octave. 

One mi g ht ask why a chord such as a major triad is so important in western music. Why 

wouldn't any combination of frequenCies do? This question has as yet not been answered. It is 

not c1ei:'Il', for instance, whether the special nature (If the major triad is "universal" or is a 

manifestation of cultural bias. Despite the compleXity of the problem, several interesting 

observations have been made. One may ob·serve that in. the harmonic series for a particular 

fr equ en cy, the 4th
, 5th, and 6th harmonics of a note form a major triad . The 6th, 7th, and gth 

harmoni c., form a minor triad. (We should note here that this definition of the minor triad is 

not quite suitable for musical use, because the7!h harmonic is actually somewhat lower in 

frequt~lIcy than the usual definition. The interval between the 6th and 7th harmonics is about 

2.6 7 half .s teps, rather than the usual 3 half-steps). It might be more relevant to describe the 

min o r triad in terms of the 4th, 5th, and 15th harmonics. All unambiguous chords fall in the 

harmonic series. somewhere. While we may speculate on mechanisms in the ear that m akes 

listening to chords both natura!" and pleasant, it is more important to note that each chord can 
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be thought of as a manifestation of (harmonics of) a fundamental frequency which may well 

not be present. For each (unambiguous) chord, we can find a frequency whose harmonics will 

contain all the notes of the chord. The existence of this "fictitious fundamental" makes it 

possible to determine the harmony of a piece of musiCal sound without determining the notes 

that are being played. This can only be done when the harmony is unambiguous. Often 

composers use ambiguous chords to great advantage. It is also important to note that any 

interval consisting of an integral number of half-steps will imply one or more fictitious 

fundamentals . One does not need a full chord. 

Methods for determining the harmony of a piece will be discussed in the section on low-level 

techniques, specifically, the autocorrelation and the optimum-comb. 
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OVERVIEW OF THE ANALYSIS SYSTEM 

The music(ll scribe has been realized for a limited class of musical inputs. The system begins 

with the cligitization of the waveform itself by an analog-to-digital converter, operating at 

25,600 samples per second to a. precision of 14 binary bits. The first processing step uses the 

optimum-comb method to determine the harmony cjf the piece. This step is not really necessary, 

but it greatly reduces the amount of computer time used by subsequent steps by reducing the 

Ilurnher of possible Ilotes that could be present at any given time. For music which contains 

notes which do not lie in perfect unambiguous harmonic relationship, more than one possible 

hinmony will be generated by the programs. 

The ne:<t phClse of the analysis involves bandpass filtering the waveform at frequencies which 

represent the frequencies of all the harmonics of all the notes that might be present in the piece, 

given tlle results of the analysis of harmony from the above step. These filtered waveforms are 

processed to see if a sinusoid is present at or near the expected frequency. If one is found, its 

(lrnp,littlde as a function of time is smoothed and approximated by a polynomial and recorded. 

The letS! phase consists of looking at the results of detecting individual sinusoids and inferring 

what notes must have been present to produce those sinusoids. This last step is the least 

rigorous, the most heuristic, and the most sensitive link in the chain. 

EXCfOpt for the original digitization and the "beautification" of the final graphical output, the 

entire system is automatic and runs without human aid or intervention . This was a design 

critfOrion. Since the task of taking musical dictation is commonly taught at the freshman and 

sophomore levels in college, it seemed pointless to insert a human in the processing path when a 

person could cia the entire task much more quickly. The only value the system might have is its 

ability to do the process all by itself. 

In fact, the system computes the pitches of the notes much more accurately than a human could. 

This IS 3S much a hindrance as it is a blessing when the final score is produced. The human 

being' perceives the pitches to be members of the notes of the scale, even if some of the notes 

are mistunecl. Humans will tolerate; even admire, large deviations from mathematically precise 

rhythm, yet can write down the original score despite the deviations. Computer syntheSized 

musIc that does not have this built-in flexibility is often recognizable by the "inhuman" 

trearmcnt of rhythm given by the mathematically precise rendering of a piece. It is quite 

difficult for the machine to infer what the original scoring was, based on a totally human 

performance. For this reason, the output scores can not be expected to be identical to the input 

score, but will reflect the modifications made by the performer. 

For a piece of music that is only a single voice, the detection of pitch is a task which has been 

tre<lted extensively by the speech understanding and recognition researchers. The topiC treated 

in this theSIS goes one step further in attempting to deal with more than one simultaneous voice. 

The on Iy reason the present implementation is restricted. to two voices is that the notes-at-
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octaves problem does not appear to have a simple solution. It is not clear how people can 

distinguish notes whose harmonics overlap entirely. 
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OVERVIEW OF THIS THESIS 

In org:allizing the thesis, many decisions had to be made concerning how much to include a nd 

wh e re to include it. Rather than present just the prognm itself, a more complete description of 

the history of music analysis and a discussion of the relation of many common signal-processing 

techniqu es to mu sical sound is included, at the cost of including a large amount of detail on 

methods that we re not included in the final realization. Since the failures can be as revealing as 

the successes , it is hoped that this additional information will be of use to future researchers 

who may av oid some duplication of effort. 

Sin cE' th ere has been little effort to produce an automated musical scribe, no literature appears 

on th e Sill"> j ee t. The only effort known to the author is the Melograph, a special-purpose 

hardware dc-v ice buil t by Inter-Ocean Systems of Santa Barbara. This device makes a graph of 

the pitch of the input waveform with time. This graph is in fact not a score, but is enough to 

get an idea of what was being played . 

The historical re view thus does not (can not) deal extensively with the exact problem at hane\. 

There are, however, many analyses of music, musical instruments, and even musical sound, 

some of which have ,been done on the computer. If we temporarily widen our scope to include 

analysis for purpose of insight and analysis for the purpose of synthesis, then we have an 

abundance of material for discussion. This is, in fact, what was done. The historical review 

includes (Ill a nalyses of musical sound by computer that we found, as well as a review of speech 

process in g li ter(lture. a related subject. 

Whil e doing th e resc(lrch for this thesis, many techniques were discovered which were not 

directly useful for th e music(ll scribe, but which had application in other areas of musical sound 

anal ys is. These techniques (the heterodyne filter especially) will be described, as well as a 

ciiscussion of many of the techniques that were not found useful for any aspect of music 

processin g for one reason or another. The latter were included so that future research'ers will 
, . 

not spend too much time on known dead ends. To some extent, these are diversions from the 

subject a t hand. but since they were part of the research done in the course of this thesis, it 

seerns reasonable to expose them here. 

The thesis is divided into four parts. The introduction (this section), a section on low-level 

tech niq LIes, a section on high-level techniq ues, and a critical review section . 

In the introdu ction, we give background information as well as a detailed historical review. 

Re(lclers not familiar with the characteristics of musical sounds may be interested in the section 

entitled What is Musical Sound? The historical review section is followed by a quick summary 

of pitch perception theory, which comes from the field of psychoacoustics. 

The 11('>; t section is on low-level techniq ues. These are the algorithms that operate directly on 

the d ig ll i l.t:,d w(lvdorm. They are largely sig:nal-processing techniques. adapted for this special 
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11 THESIS OVERVIEW 

c.pplicarion, In order, we review the autocorrelation function and the 0pilmUm -CL"lmb (t'chrllqut' 

These are useful for periodicity detection and tracking, Their application to the detection of 

musical harmony is 'discussed . The heterodyne filter follows with a method for determining the 

amplitudes and frequencies of the harmonics of a sing'le musical note. This technique has 

turn ed out to be very useful for music synthesis, for it can capture all the time-variant 

information in a musical tone. Next, we review the bandpass filter. A Ithough it is a very old 

device, its application to musical sound has been little explored in the past. We show several 

graphs of applications of bandpass filtering' to the extraction of a single harmonic from a 

pol yphonic piece of musical sound. The bandpass filter forms the core of the musical 

transcription system. 

In this section we also discuss several signal-processing techniques that were tried but were not 

found to be entirely useful for the current problem. These include the cepstrum, the discrete 

Fourier transform, and the linear predictor. The cepsirum and the linear predictor seem to be 
useful only in the monophonic case, The discrete Fourier , transform assumes that the 

autocorrelation of the input signal is stationary. If the signal is changing either in amplitude or 

freg uency, the transform is distorted. This means that any system based upon the discrete 

Fourier transform could never be extended to encompass vibrato or highly reverberant 

en v ironments. 

Next, we discuss the way we combine the various signal-processing routines to form a complete 
low-level package for musical transcription. Here we discuss the utility of determining the 

vertical harmony of the piece as a planning phase for setting up the frequencies of a band of 

bandpass filters . The filter output is processed with a pitch detector and an energ'y detector to 

produce power and frequency functions for the output of each filter. In the planning phase, we 

assure that every harmonic of every note will be passed by some filter. 

The next section deals with intermediate-level techniques. Here we pass from the world of 

digital signal processing into the world of artificial intelligence. These techniques deal with 

making sense from the outputs of the bandpass filters, figuring out what notes were present in 

the input Signal, and how best to print these for readability. To allow easy comparison of the 

filter outputs, we produce a rating of the quality of a given power-frequency function pair. If 

th is rating is properly prepared, we can easily separate the spurious traces from the meaningful 

ones. We can then hypothesize the existence of notes from their harmonics. We then discuss 

some of the aspects of manuscripting. 

The last section is a critical review of the system. We begin with some examples which show 

the viability of the system. We then discuss the weak points of the system with suggestions as to 

how they may be improved. This involves the development of adaptive pitch tracking' filters 

as well as further research in other areas. 
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I-lISTO RIC~AL REVIEW 

EARLY ANALYSES 

TllPl"f:' have been many analyses done of music instrument tones, usually in order to gain 

insi g ht into the physics of a specific instrument. It was not until the advent of electronics that 

music .'In ;:dy~is 01"1 a quantitative basis became practical. One of the first examples we have is 

that of Ga ckhaus [1927, 1932J. His system consisted of a narrow band-pass filter, using a carbon 

ll1iCl"opil01W and a 5 vacuum-tube amplifier, connected to a pen and drum recorder. The filter 

was tuned [0 the frequency of the harmonic 'of interest and the bandwidth was set to suppress 

adj.'lcCIlt harmonics. The drum assembly was brought up to speed by hand (turning a crank). 

Theil all at once, the pen was lowered onto the paper, the threaded shaft that the drum turned 

all was stopped, leaving the drum to turn and screw itself down (by momentum) and thus cause 

the pen [0 lea ve a helical trace on the paper, and the musician played a single note on his 

instrument. The drum was apparently massive enough to keep its speed for quite a while. The 

resultin g trace was taken to approximate the behaVior of a single harmonic from the 

instrument. The process was repeated for many harmonics of many different notes. Needless to 

say, the process was cumbersome enough to prevent great volumes of data from being 

accumulated. The amplitude of the harmonic with time was then traced and plotted by hand. 

Since wire recording techniques were not yet perfected, the note had to be played ag'ain and 

ag ain to get all the harmonics. We know now that no two notes are alike in fine structure, thus 

castin g doubt on the details of the results, but the technique did work adequately on the steady­

st a tt: portion of notes. His principal result was an analysis of violin resonances in an attempt to 

iind out why the Stradivarius ~as so revered in the music world . This same theme recurs 

const :lI1tly throughout the literature. 

The ad vance of the osciJliscope in the 40's brought about a new wave of research . The steady­

state portion of a waveform could be photographedor drawn from the face of the cathode-ray 

tube, and then analyzed by calculating the Fourier sine and cosine series. The Fourier integrals 

were often computed by hand, until a mechanical device (the Henrici analyzer) was built to do 

jllst that. The operator would trace the curve with the stylus of the device and then just read 

off the amplitudes of the harmonics on the dials. Analyses of this sort are very common in the 

literature [Lehman 1964, Parker 1947, Saunders 1946, Fletcher et al 19621 Saunders analysed 

wincl instrument tones to try to determine if the wind instruments exhibited resonances like t~e 

strin g instruments do. He found no evidence of the existence of formants in the instruments he 

analysed (clarinet, oboe, English horn, French horn, and flute). Parker analysed the tones of 

wooden and metal clarinets using a mechanical embouchure, finding that there was little 

difference between wood and metal clarinet tones. Lehman analysed the bassoon in great detail, 

usill g the Kay sonagraph, a device consisting of a number of narrow band-pass filters and a 

recordin g system that produced bars on a roll of paper that became thicker in proportion to the 

enei-g'Y out(Jut of each bandpass filter. He concluded that there is a strong formant between 440 

and r,oo Hz in the bassoon, accompanied by a weaker formant around 1220 and 1280 Hz. 
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COMPUTER ANALYSES 

Let LIS jump immediately into the computer analysis of music instrument tones, leaving behind 

the large number of articles which were done without computers. One of the first computer­

based analyses of music instrument tones was done by David Luce (1963). Using the 709 at 

MIT, he digitized and analyzed tones from a large number of music instruments. Again, this 

was done for g'aining insight into the behavior of the instrument and its possible perceptual 

implications. Since his analysis technique was the basis for several following works, including' 

oLlr own heterodyne filter, we will describe and analyze it in some detail. 

LUCE " ';' 

The object of Luce's method was to determine the amplitudes and frequencies of each of the 

harmonics of a tone as functions of time. These were plotted for further study. The method 

used was to approximate the integrals for the Fourier sine and cosine series by discrete 

summations. First, the fundamental frequency was determined by filtering the note itself to 

remove all harmonics except the fundamental. The fundamental was then digitized and the 

zero crossings were used to compute the frequency. This works ' in most cases, but sometimes 

gives errors-of-octave when the energy in the fundamental is very weak. In these cases, the 

pitch of the note was matched by hand with an oscillator and the waveform from the oscillator 

was used . This estimate of the fundamental frequency was used to divide up the waveform 

from the instrument roughly into separate periods. For each period, 24 equally spaced points 

~ere selected. Since the period of the signal was not necessarily a multiple of 24 points, Iirlear 

interpolation was lIsed to generate the values between the sample points. From these 24 points, 

the Fourier sine and cosine coefficients were generated. This is represented by the following 

formulae: 

24 
(1) an(m) • ~L 

12 L .. 1 

24 
(2) b n (m) .. ~L 

12 L .. 1 

LTg 
s [(m-l) T ,,+ 24 sin(2nn 2~) 

LT s [(m- l) T,,+ N cos (2nn 2~ ) 

Where s ( t) is the input waveform, 

T" is the period of the input waveform, 

m is the number of the period under analysis, 

L is the sample number within the period which is from 1 to 24, 

and n is the harmonic number. 

The result was one pair of coefficients for every period throug'hout the duration of the 
waveform. The pair of coefficients were converted to radial form and the magnitudes and 
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an gles were then plotted . To test the validity of the analysis procedure, the mag'nitudes and 
an gles were L1sed to synthesize a tone. This tone was played through a digital-to-a nalog 
can viert el' (DA C) ilnd compared to the original tone. The first problem encountered was th e 

i;Jct th at t he n1<1gnitudes and phases that were sampled once per period lead to a discontinuous 
wav eform . ThiS is because at the beginning of each period, the phases and magnitudes were 
sudd enly chan ged to the values for that period. If the parameters for this period were 
signific an tly different for the previous period, a discontinuity results. This is often the case 

during the <l tt;'1ck and decay portions of a note. This was remedied in part by filterin g 

(dig it a ll y) th e wa veform at a frequency higher than the frequency of the highest harmonic to 
remo ve spurious harmonic distortion. The results of listening tests were that the string family 

W (l S well reproduced, but the brasses suffered a bit. The lowest octaves trumpet, trombone, tub a, 

and French horn were all lioticeably different than the original notes. The notes sounded very 
I 

rou g h . This was explained by the insufficiency of using 24 points per period. Since the brass 
ton es hav e a pulse-like waveform, sometimes the pulse itself occurred between two selected 

points, thus reducing the magnitudes of the Forier components for that period. This hit-or-miss 
beh a vior created great jitter in the magnitudes as functions of time, thus contributing to a 
roug h sound . Similar difficulties were encountered with the clarinet tone. 

Wh z~t '.Ale rn f?~U1 by "pulse-like" is that the waveform, in each period, has an initial strong 
m a x i mil III iollowed by acti v ity of lesser amplitudes th roughout the remainder of th e period . 

Thi " em occur if the harmonics of the waveform ani all cosines, such that their max ima 
coin cide an el rein force, producing one strong maximum per period . 

FH EED MAN 

T he next se t of analysis programs were written by Morris David Freedman at the Uni versit y of 

Illinois [1965, 1967, 1968J. In his system, music instrument tones are modeled by the followin g 

equ at ion: 
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m 2: ArkU (t-T
rk

) (l-e -ark (t-Trk ) } 

r=! 
m 

2: h ,k{t) sin [Wk(t-T 1k l+1I"k] 
k=l 

Where U ( t) is the unit step function, 

k is the harmonic number, 

(.Uk is the radian frequency of the k th harmonic, 

11" k is the phase of the k th harmonic, 

T Ik is the beginning time of the k th harmonic, 

hk ( t) is the amplitude envelope of the k th harmonic. 

Ark is the amplitude of the r th component of the amplitude envelope of 

the k th harmonic, 

Trk is the beginning time of the rth component of the amplitude envelope 

of the k th harmonic, 

ark is the time constant of the rth component of the amplitude envelope 

of the k th harmonic, 

9 ( t) is the signal that is to model the music instrument tone. 

Th is is a sum of sinusoids, not necessarily harmonically related, with piecewise-constant 

freq uencies. The amplitudes of the sinusoids are piecewise sums of exponentials and constants. 

For synthesis, linear interpolation was used to smoothly change from one frequency value to the 

next, thus eliminating Luce's problem of discontinuities. ,To get the parameters of the model 

from an actual music instrument tone, a three step process was used, The first step gets the 

phase differences of the harmonics and' the average frequency of each harmonic. The second 

step determins the amplitudes and phases of each of the harmonics as functions of time, guided 

by the frequencies of the harmonics as computed in the first step. The second step can then be 

repeated with the new frequency data for a better approximation. This completed the analysis. 

The amplitude functions of the harmonics were examined for places of great change of slope 

and these places were taken to be the "breakpoints" for the piecewise-exponential amplitudes as 

shown above, 

The first step of the analysis used what he called the "D-transform." It is defined as follows : 

(S)O<t,W) 
1 t 

t 5 f (T) e - j WT . dT 
e 

Where f (T) is the input waveform 
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ThI S IS (I fouri er Integral of a iunction that is limited in time to posi tive values less th an t. Th e 

second :illcl third steps of the analysis used what he called the "G-transform" which is defin ed 
as follows: 

(6) G{t,W) 
t+T f f ('T) e - jW'T d'T 

t-T 

Where T is the period of the input waveform. 

Thi s is a Fourier integral over one period of the input waveform, This returns the quadrature 

con-'pol"lents which can be used to derive the magnitudes and phases of the harmonics as 
functions of time. Freedman does not say how often the integral is evaluated, but we assume it 
is evaluated once per period of the input Signal, as Luce did. 

Again, the tones were synthesized using the data from the analYSis. The trumpet and 
saxophone tones were judged to be nearly indistinguishable from the originals. The violin was 

judged the poorest , although it was judged as quite goad. In each case, the synthetic tone 

showed the chClr(lcteristic quality of the instrument. The violin sounded bowed and the flute 
sounded "breathy." 

BEA llCHAMP, J{ EELER 

BerlllCh<llllp, ;.lIso at University of Illinois, built upon the work of Freedman by using only the 
G·tramform, adding a filtering operation, and using piecewise linear functions to represent the 

amplitude functions [Beauchamp 1969]. The amplitude functions were filtered with a low-pass 

filter to rernove a characteristic ripple in the functions that was at the frequency of the 

funcLlmcnt;:d. He evaluated the functions "a few" times per period. The amplitude functions 
were then approximated with p'iecewise-linear functions. For syntheSiS, the frequencies (phases) 

of the harmonics were not varied with time. Just the initial phase angles were preserved. The 
freq llency of the entire tone was allowed to vary in a piecewise-lineal' fashion, with the ratios 
between the frequencies of harmonics held constant, as with Luce and Freedman, but explicit 
and Sep,H(lte control over the frequencies of each of the harmonics was not used. 

Since the publication of the abbve described paper, Beauchamp [personal communication. 
197,tJ hrls :1pplied the Fast Fourier Transform algorithm (FFT) to the evaluation of the G­

transform . This is clone by first reducing each period of the input signal to 64 points by linear 

interpolatIon, much like Luce, multiplying the signal by a Hamming "window" function 
[Blackman and Tukey 1959], and then taking the discrete Fourier transform of each period 

usin g the FFT algorithm for effiCiency. 

f( ce1er [1972J ana Iyzed tones from organ pipes using techniques similar to Beauchamp's 

publish ed method. He evaluated the Fourier integral numerically using quadratic 
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approximation by Simpson's rule and Lagrangian interpolation to improve the accuracy. In his 

method, the worst-case error in the amplitude estimate for a given harmonic was less than 1.25 

percent. He was not concerned about the phase as a function of time and thus did not carry 

along that information. He did not attempt a synthesis of the tones from the analysis data. 

THE MELOGRAPH 

The computer analysis techniques described above were for the purpose of gaining insight into 

the properties of instruments or musical waveforms, and simulation of music instrument tones. 

We have still not described any method of transcribing a piece of music. This is beca!1se, to our 

knowledge, no such analysis has ever been done. The closest we have found is work in speech 

understanding and recognition, and a peculiar device called the Melograph. 

The Melograph is a special-purpose piece of mostly analog hardware and a chart recording 

scheme which has two purposes. One function it can perform is that of a high-resolution 

spectrograph. It can simulate 100 bandpass filters and record the energy output of each on the 

gT<lph. The second function is that of detecting, tracking, and graphing the fundamental 

freq uency of an input waveform with time. It can only operate on a monophonic ' (one-voice) 

input signal in a relatively noise-free environment. It accomplishes this by realizing a band of 

1/3 octave band-pass filters. The outputs of the filters are scanned every 4 milliseconds from 

lowest frequency to highest, searching for a maximum in the energy output of a particular filter 

relati ve to its neighbors. When the first maximum is found, the output of that filter is assumed 

to contain the fundamental of the tone. The zero crossings of the output of that filter are 

counted and that. number is used to compute the pitch. This pitch is then plotted on the chart.. 

Since there is no documentation on the operation of the device, this information was obtained 

by verbal contact. The device belongs to the Ethnomusicology department of the University of 

Los A ngeles and is used for transcribing single-voiced ethnic music, usually human voice. The 

device was built by Inter-Ocean systems of Santa Barbara. 

To comment on the operation of the Melograph, let us quote from an article by M .R. Schroeder 

[1970): 

The oldest approach [to pitch detection] simply isolates the fundamental frequency 
of the signal by means of a low-pass or band-pass filter and then determines the 
frequency or period of the fundamental by means of measuring the rate of or the 
distance between axis crossings. Unfortunately, in many speech signals the 
fundamental is weak or even absent (as in most telephone signals). 

In general, we cannot rely on the presence of the fundamental, or on the hope that the 
fundamental will be stronger than the second harmonic. 
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SPEECH TECHNIQUES 

The' IcseCirch in speech understanding has contributed a great deal of work in pitch detection 

and system estimation . Since any musical scribe must detect the pitch of the incoming 

waveform, much of this may be useful. Let us describe some of these techniques in detail: 

FOURIEH METHODS 

Our old st illldards, the Fourier transform and autocorrelation, were among the first to be tried 

[H::nris and Weiss 1963]. These techniques were useful but had certain problems. In either the 

spectrum or the autocorrelation, there is a peak in the output at every multiple of the 

fundamental frequency (for autocorrelation, there is a peak at each multiple of the fundamental 

period). One could not just take the lowest peak because it is sometimes not there. Harris and 

Weiss developed a method of looking at several peaks in a row and forming an estimate of the 

fund zwwntal frequency by averaging the contributions from the two strongest adjacent peaks. 

Rife ,1Ilel Y incf.'nt (1970), although not working directly with the pitch detection problem, 

dev/~ lopecl a method of interpolating to get the position of the peak quite accurately by using 

weig blil' g functions which had known effects on the transforms. 

TH E CEPSTR lJM 

W itlt the Cld vent of the cepstrum, probably first used by Bogert working on a sug·g·estion by 

TlIkey [Sogert, Healy, and Tukey, 1963], a new tool for speech research was opened up. Noll's 

c1Clss ic (l rtic1e [1967J gave detailed instructions on the use of the cepstrum for the detection of 

fundalw:lltal frequency. This system had the advantage that the maximum of the cepstrum was 

of tell un iq lIe. W hen there was another peak, it was generally at twice the period of the 

fundamental, and rarely did it exceed the strength of the peak representing the fundamental. 

The ccpstrurn consists of the inverse Fourier transform of the log-magnitude Fourier transform 

of the input waveform. Since the autocorrelation is the. inverse Fourier transform of the 

mag·nitude Fourier transform of the input waveform, the two processes are related . They both 

have time as the independent variable; they plot period rather than frequency. The theoretical 

basis of the method was developed in great detail by Oppenheim [1968, 1969], and Schafer 

[1969]. Roughly, the way it works in speech analysis is as follows: the speech waveform is taken 

to be the result of an excitation function (the. glottal pulse) and a realizable filter (the vocal 

tract). It (hen follows that the log-magnitude Fourier transform of a segment of a speech 

wa veform is the sum of the log-magnitude Fourier transforms of the glottal pulse waveform 

and the vocal tract impulse response. This being true, one can compute what the Fourier 

tran sform of this log-magnitude spectrum will be by superposition, since the signals add in the 

log-ma gnitud e domain . Since the vocal tract is a filter, its frequency response i~ usually a 

broad , smooth curve with a small number of peaks (formants). The glottal pulse, however, is a 

neCirly-pcrioc!ic w(iveform which consequently has many harmonics. Its transform has a peak at 

the frequency of every harmonic. The transform is roughly periodiC with a period equal to the 

fund il l11 e lll cd frequency of the signal. If we take the transform of this quasi-periodic log-
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magnitude spectrum, we would then expect 10 get a strong peak at the period repn:"t' n r ll\ ~' t ht' 

repetition rate in the frequency (or time) domain. When we take the transform of the log­

magnitude frequency response of the vocal tract~ however, we would expect to get something 

concentrated around the short periods, since the frequency response of the vocal tract is broad 

and slowly varying. This is, in fact, generally the case. The peak due to the periodicity of the 

glottal pulse tends to stand out from the activity dueto the vocal tract. In fact, this separation 

of repetition from system response (excitation from filtering) was the basis of several ingenious 

techniques for removing echos [Schafer 1969) and for estimating the impulse response of the 

vocal tract. This estimation led to the development of the homomorphic vocoder [Oppenheim 

1969, Miller 1973), where the cepstrum was used to determine the pitch of the speech sig'n al as 

weJl as the impulse response. The Signal could then be synthesized by convolving the derived 

impulse response with an impulse train at the original pitch . The impulse response. Was 

determined by eliminating' the peak from the cepstrum and then inverting the process to yield a 

time series which was, in fact, an estimate of the impulse response of the filter . The peak was 

eliminated by simply setting the cepstrum to zero from the peak on, leaving only the short-time 

values of the cepstrum. Miller [1973) made extensive use of this technique to extract singing 
voice from orchestral background. Since the cepstrum just picked up whatever was loudest, 

ther.e was quite a bit of error in the analysis which was subsequently corrected by himd. The 
cepstrum would just as happily track an orchestral instrument as the voice, if it happened to be 

dominant at the time. The result was synthesized with good results. The singing was hig'hly 

intelligible and preserved well the character of the singer. One innovation in the synthesis is 

worth noting. Since the analysis is somewhat noisy, the impulse response estimate tended to vary 

from one estimate to thenext. This produced some undesirable variation in the synthesis which 

sounded like roughness in the tone. This was eliminated by repeating each impulse response not 

just once, but five times with amplitudes which built up to a maximum and then f. This had 

the result of interpolating' smoothly between one impulse response and the next and thus 

eliminated any roughness in the sound. Schafer's thesis gives an excellent review of 
homomorphiC filter techniques. 

THE LINEAR PREDICTOR 

Another techniq ue of system estimation which has been shown useful in pitch detection is the 

linear predictor Utakura and Saito 1968, 1970, 1971; Markel 1972; Makhoul and Wolf 1972; 

Mak.houl 1975; Boll 1973). The idea here is to again model the signal as an excitation function, 

and a filter . We lise the discrete analog of the Wiener-Hopf integ-ral [Wiener 1947; Levinson 

1947; Robinson 1967; Lee 1960) to estimate a non-recursive digital filter that approximates a 

filter which corresponds to the inverse of the filter that produced the sound. In other words, the 

filter we calculate has an anti-resonance. everywhere the vocal tract has a resonance. If we filter 

the speech waveform with this filter that we have computed, the output will approach an 

impulse train . The better the estimation of the filter, the closer to an impulse train the output 

will be. This is because this filter, called an "inverse filter," tends to make the amplitudes of the 
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harlllUlll CS /01-juaJ. Since the periodic signal with harmonics that all have the SClme ampli tude is a 
pul se trelin. the output of the filter approaches the ideal pulse train . Pitch is then detected by 

calcubtlllg' the distance between successive peaks of the inverse filtered speech waveform. Pitch 
can elisa be computed by taking the autocorrelation of the inverse filtered speech waveform. 
The larges t peak in ' the autocorrelation is taken to represent the fundamental period. The 
theor y behind this is that the reason the autocorrelation is not useful when directly applied to 
the speech wa veform is widening of the autocorrelation peaks by the effect of the vocal tract. 
If the effect of the vocal tract is suppressed by filtering the waveform with the inverse filter, 
the peClks in the autocorrelation will be sharpened conSiderably. Since the speech waveform is 
constantly changing, the filter must be recOniputed periodically. It is often done every 5 or 10 
milliseconds. 

The linear predictor can also be used, like the cepstrum, as a vocoder. Since the filter calculated 
by the preclicror is (In approximation to a filter whose inverse behaves like the vocal tract, the 
speec h IVa veform can be synthesized by simply filtering a pulse train by the inverse of the filter 
prodlJced by the predictor. Inverting the spectrum of a digital filter is a simple operation . Atal 

and Han auer [1971J and later Markel and Gray [1974] programmed vocoders based on this 
principle and found them quite successful. A marvelous synthesis of the cepstrum and the 
line ;:,r pred ictor wCls' c\one by Tribolet [1974], who joined the two methods to get an estimate of 
both the poles and the zeros of the filter . The linear predictor by itself is an all-pole model and 
is sonwtirnes inadeq uate in the presence of a strong nasal zero. These topiCS are part of the 
larg:e r field of system estimation. In this diScipline, the object is to estimate the fllter that could 
hav e produced the input signal in as much detail as possible with as little error and 
computation time as possible. Tribolet's thesis gives an excellent review of system estimation 
techniques. A n excellent review and detailed analysis of the linear predictor is g'iven by 
Makhoul Cl nd Wolf [1972], Boll has also made significant contributions to the reduction of the 
compute time for the linear predictor [I973J by assuming that the filter which represents the 
voca l tr~lct changes slowly with time. The estimate at this point in time can then be used to aid 
the computCltian of the estimate at the next point in time. 

," 
~' ., ' 

M rSCELLANEOl.JS METHODS 

Another rnet hod of pitch extraction that is also based on spectral flattening (making all the 
harmonics more alike in amplitude) was g'iven by Sandhi [1968]. In his system, a band of 
b Cl nclp;'l.ss filters Clre used to determine the spectral envelope. The speech waveform is then 
aC(fcntu Citecl in frequencies where it is weakest. The resulting waveform has much more 
prominent peClk s which can then be used to determine the fundamental frequency, either 
direc tly by measuring the distance between peaks, or by taking the largest peak in the 
autocorrclatlOn. Sandhi also noted that the peaks in the autocorrelation can be enhanced by 
cent er clipping. This process uses an adaptive threshold to gate the signal throug'h only when 
its rna e: nitude exceeds the threshold. When the signal is passed, the threshold is subtracted 
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(add ed I:' the signal is negative) to prevent discontinuitle~ In the w.weform Tht' {hlt'~lh'I~1 IS Srt 

to a fraction (such as .7) of the maximum amplitude in a given wind~)w The It'lltt' t r li.'pl'" 
waveform is then autocorrelated, and the strongest peak in the autocorrelation IS C'lk.t'fl tL) be (he 

pitch period. 

DIRECT WA VEFORM ANALYSIS 

A series of pitch detectors have been devised which base their estimates directly on the speech 

waveform itself [Reddy 1966; Vicens 1969; Gold 1962; Gold and Rabiner 1969; Miller 1975J. 

Reddy used a three-step process based on measuring the significant maxima and minima of the 

speech waveform. The first step just detected the times when the speech waveform exceeded a 

certain fraction of the maximum of the waveform in a certain region. The second step 

determined the significant maxima and minima of the waveform, looking for places where a 

maximum and a minimum occur together. These two methods were related by three heuristic 

algorithms which matched the two pitch estimates, eliminated irregularities and filled "holes" in 

the pitch estimates. Gold and Rabiner made six measurements on the speech waveform, 

producing six different pitch period indications. A final stage of processing coordinated these 
six estimates to produce the final estimate. Two refinements were offered to improve the 

performance. Miller developed a technique which detects the "principal excursion" of the 

speech waveform for each period. This excursion is the large positive pulse which occurs after 

the glottal pulse. It is essentially- the impulse response of the vocal tract. In most phonemes 

except nasals, this pulse is quite prominent. His method consists of integrating the waveform to 

locate the position of maximum positive area. The zero crossing preceeding this position is 

taken to be the beginning of the principal excursion. A series of heuristics is used to prune 
spurious and irregular zero crossings from the estimate. 

A 11 of the previous methods are based on the fact that the speech waveform is unique in many 

respects. It is this special behavior of the speech waveform that makes measurements on the 

waveform itself useful. These methods are somewhat sensitive to phase distortion. Miller's 

method, for instance, can be fooled by passing the speech waveform through an all-pass filter, 

which causes phase distortion that can eliminate the prominent peak in the signa\. Excessive 

room reverberation, such as found in large concert halls, can also spoil the method, since 

reverberation causes great phase distortion. The method of Gold and Rabiner used a Lerner 

filter for bandpass filtering to preserve the phase relations as much as possible. 
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M l lSI<: 1'1':1(( : [P'I'ION 
or: A eh j Id's Garden of Psychoacoustics 

PITCH PERCEPTION 

In trying to determine a method for analyzing musical sound, it would seem reasonable to look 

at what is known about how the ear does it, since we are trying to rival the ear's performance. 

A s it turns out, many interesting observations have been made, but they raise many more 

questions than they answer. Let us review the existing literature in one particular area, the 

perception of the pitch of one voice. It seems impossible to cover all the interesting work in 

this (lrl? ~~. We sh~~11 not attempt to do so here. 

Our ear is presented with a musical tone. We perceive it as being at some pitch. What features 

of the w(lvcform determine that pitch? What starts out sounding like such a simple problem 

turns Ollt to be very complex. 

In ollr n(livite, we might first postulate something like Ohm's acoustical law [Ohm 1843). Ohm 

suggested C1pplying Fourier's theorem, such that each tone of a different pitch in a complex 

sound originates from the objective existence of a peak at that particular frequency in the 

Fourier analysis of the acoustic waveform. This would imply that the impression of pitch 

depend s riot only on the existence of a sinusoid at the fundamental frequency, but also that that 

sinllsoid is of a stronger amplitude than any harmonics the tone may exhibit. Seebeck [1813J 

countered the theory of Ohm by determining the Fourier spectra of several of his previous 

observations [184 J] and showing that in several cases, the sinusoid at the fundamental 

frequency was quite weak or even missing'. A pitch at the hypothetical fundamental frequency 

was still perceived. Ohm [1844) and later Helmholtz (1863] declared Seebeck's observations to 

be invalid and the result of either illusion or faulty experimental technique. 

We skip a half a century and pick lip again with the work of Von Bekesy [1928], who 

produced proof that the ear does a spectral analysis of some sort, where different frequencies 

(,XCiII; responses from nemons originating in different places along the basilar membrane. As 

. we progress a.long the membrane, the excitory frequency changes smoothly in a vaguely 

logarithmic manner. 

With the corning of electronics, increasing' evidence was gathered for the case of the musmg 

fu.ndamental, that indeed, a pitch could be perceived without the existence of any fundamental 

frequency at all. In fact, a group of higher harmonics cari be heard collectively as a single, 

unified , percept. This percept is called the residue. 

11'1 (Ill ::lttempt to explain the phenomenon of the residue, one might observe that several 

adjacent harmonics added together produce a waveform which has a periodic modulation at 

the freq uency corresponding to the difference of the harmonics. One might then hypothesize 

that eithf:'r the ear detects the envelope of the incoming waveform, thus demodulating the signal 
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and extracting' the frequency of the undulation, or perhaps the ear perceives the differences 

between the harmonics directly and infers the pitch from that. Figure I shows the waveform of 

a signal that has no fundamental frequency. It was produced by bandpass filtering a signal 

which has many harmonics. Notice the regular undulation that might imply some fundamental 

periodicity. Figure 2 shows the discrete Fourier transform of the waveform in figure I, 

showing that it, indeed, has no fundamental. It also shows that the frequency of the undulation 

is roughly equal to the spacing of the harmonics in the Fourier transform. This undulation is a 
characteristic of a cluster of isolated harmonics. 

Schouten [1940] in one experiment showed that neither of these could be the case. This was 

doi'le by shifting the set of harmonics collectively by some amount. This makes the sinusoids no 

longer harmonically related, but it preserves the constant differences among them. In fact, one 

does perceive a change in the pitch of the resid~e even though the envelope of the waveform 

has not changed, neir has the differences of the frequencies of the sinusoids, 

So. It is not the envelope, nor is it the differences among the harmonics. Well, what is it? De 

Boer [1956] did some revealing experiments which began the current trend in thinking on this 

question. If one takes a sinusoid of some frequency f, say 2000 Hz, and amplitude modulates it 

with some other frequency g, say 200 Hz, one gets three sinusoids of frequencies f-g, f, and 

f+g . As usual, these are heard as one percept of pitch g. A change in the carrier frequency, f, 

results in a proportional shift in perceived pitch. A more remarkable observation was that the 

pitch shifted downward when the modulating frequency, g, was raised! This effect was met 

with doubt up to' incredulity. De Boer made the observation that these phenomena could be 

ex plained by hypothesizing that the ear detected the time difference between peaks of 

comparable amplitude. This is called the fine structure hypothesis, that the ear detects the 

details of the fine'structure of the waveform and uses that data as the basis for pitch . Figure 3 

shows the essence of this theory. ·We see a waveform which has a regular undulation . ,We have 

chosen an ambiguous case, where there are two separate maxima of equal amplitude, such that 

the time between the maximum of the previous undulation and this undulation can have one 

of two values. This theory predkts that tfie"pt~~h: will: be ambiguous in this case. 

R itsrna [1970] extended this theory a bit by showing that if pitch information is available along 

a large part of the basilar membrane at once (that is, if a tone has many harmonics), then the 

ear uses only the information from a narrow band. This band is positioned at about 3 to 5 

times the pitch value. This is called the concept of dominance. Ritsma sums up the theory as 

fQllows: 

The sound is subjected to a spectral analysis on the basilar membrane. Because of 
the limited resolving power of the membrane, on each place of the membrane, a 
waveform is generated. According to the concept of dominance, only one region on 

, the basilar membrane is dominant with respect to the perception of pitch. This 
region is roughly 4 times the pitch value. On the waveform generated in this 
dominant region, the ear performs an autocorrelation-like process determining the 
time interval between two pronounced positive peaks in the fine structu~e. 
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FIGURE 1. This waveform was produced by filtering the waveform of a guitar tone so as to 
se lect onl y a few of the upper harmonics. The note that was being played was roughly an E4 (332 
H~). The sixth and seventh harmonics were most prominant in this waveform, although many others 
<'It·e present to a lesser extent. It is clear that the waveform is periodic with a period of roughly 3 
milli seconds, which corresponds to the frequency of the note. 
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FIGURE 2. This is the discrete Fourier transform of the waveform in figure 1. As we can 
. see, the first and second harmonics are entirely absent. Despite their absence, the waveform in 
fi8ure 1 is quite periodic. . 
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FIGURE 3. This illustrates orie theory of pitch detection which is sometimes called the 
"fine-structure hypothesis". This theory states that the pitch is determined by measuring the time 
between the peaks in successive wave groups. In the case pictured above, the theory predicts a 
perceptual ambiguity in pitch, that some subjects would report f Hz. and some subjects would 
report g Hz as the pitch of this tone. This tone is inharmonic. As was pointed out by Wightman 
[1973], this theory is highly suspect because it depends on the phasing of the component 
sinusoids, whereas pitch perception does not seem to. The effect of phase change can be 
demonstrated simply by inverting the waveform. If we measure the distance between the negative 
peaks rather than the positive peaks, there is no longer any ambiguity in the pitch measurement. 
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This is what is called the place versus period controversy. The place advocates, of which 

Helmholtz. and Ohm were members, attribute the perception of pitch to the position of 

max imun1 stimulation on the basilar membrane. The basilar membrane is known [Beke'sy 1934] 

to be frequency sensitive, with the frequency distributed motonically along the length of the 

m e mbr a ne. The jJeriod advocates use the existence of the residue to show that there doesn't 

have to be any maximum at the place where pitch is perceived . 

There is, Clg:ain, evidence that the fine structure process is not the whole story. Smoorenburg 

did exper im ents with the perceived pitch of complexes consisting of two pure sinusoids. The 

problem is that given two tones at frequencies f) and f2 (f)<f 2), one not only hears the 

diffe rence tone f 2-f) , but one hears the combination tone 2f)-f2' and it is louder than the 

difference tone. This effect can not be explained by any of the methods discussed so far. 

Hmrnm
' 

One explanation might be that there are nonlinearities in the ear that produce cross­

frequen cies. The problem is that althoug'h one can hear tones at frequencies (n+ll f)-nf2' 

one d oes not heClr the corresponding higher tones at (n+l) f 2-n f). One can only wriggle out 

of this o ne by declaring that the nonlinearity must be frequency-selective, that it suppresses the 

highe r s ideband itself. Further work places more and more restrictions on the nonlinearity, such 

that it ca n only be considered as tentative, and the existence of the combination tones has yet to 

be f?x plCtined sa tisfactorily. 

Terl:arclt [1970) advanced De Boer's (and others') work and found small deviations in the pitch 

of the residue from what would be predicted by the fine-structure hypothesis. His conclusions 

impl y th<l t rhe ear itself transduces primary sensory data on the level of frequencies and 

amplitudes of the partials of a tone, and some higher level of processing is responsible for many 

of tllf" funny effects, like the residue. 

Th is was (1 11 fine and good until Wightman [1973, 1974] came along' and showed that a change 

in the re la tiv e phases of the harmonics of a tone changes the fine structure drastically , but dOes 

not a Iler the percei ved pitch . This essentially eliminates the fine-structure hypothesis. This ca n 

be seen iii fi gure 3 by merely inverting the picture. This changes the fine structure entirely. For 

instance, there is no longer an ambiguity in the distance between maxima. 

Th e re (Ire any number of other effects which should be mentioned just to give one an idea of 

the complp.:--:ity of the issue. One marvelous effect is that of repetition pitch . If one takes a 

signal (like white noise) and delays it by some amount (say, 10 ms) and adds it back into itself, a 

listen er gencrally perceives a pitch at the frequency represented by th e delay. If the original 

s ig n a l is pCl sseci through a bandpass filter, and its delayed repetition passed through another 

bCln ci pa ss filter whose passband does not overlap that of the first filter, the sum of the two 

fil teJf;'d waveforms does not produce any pitch effect [Bilsen 1970). The point here is that this 

effect cou ld !lot be due to comparing successive peaks in the waveform for repetition because 

there are not necessarily meaningful repeating peaks. This argues for a more gross, averaging 

sort of process, like autocorrelation . There is a dichotic repetition pitch also. The original can 
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be played into one ear and the delayed sound can be played into the other, thus producing a 

pitch. This could only be produced at the first place where the sig'nals from different ears meet 

at the same place; where they can be compared. The first place this is done is in the cortex 

itself. 

A nother effect reported in the literature is that of the binaural residue [Houtsma and Goldstein 

1972], In this experiment, two higher harmonics are used to produce a perceived pitch at the 

frequency of the missing fundamental. The difference is that one harmonic is played into one 

ear and the other harmonic is played in the other ear. At low sound pressure levels, one indeed 

does get a residue phenomenon. Like the dichotic repetition pitch, this implies that some aspects 

of pitch formation are done at a high level of processing. Our informal listening tests have 
fai led to confirm this effect. 

Siebert [1970] calculated entirely from statistical arguments that human perception of pure sine 

tones was based on place rather than periodicity. His calculations show that not only would the 

frequency resolution be much more acute, but the form of the behavior as a function of the 

frequency of the tone would be different if time cues were used. It would, for one thing, be 

dependent upon the amplitude of the tone. Except in the limit (very loud or very soft), the 

resolution is independent of amplitude. Three more recent theories (Wightman, Goldstein 

[1973], Terhardt) go on to propose modified place theories. In these theses, the place of 

stimulation is transmitted to the brain, where some higher-level process pieces together the 

evidence and registers a pitch. Terhardt even shows a learning model which must undergo a 

training sequence to acqUire effects like the. residue. In none of these theories is the 

fundamental necessary for pitch perception. It is inferred from a sequence of harmonics. Both 

Goldstein and Terhardt present models that are essentially statistical in nature, leaning hea v ily 

toward decision-theoretic methodology. Wightman is still using a modified autocorrelation 

approach with reasonable results so far. None of the models is comprehensive enough to 

explain all the effects of pitch perception that have been noted, but they all show promise of 

being extendable. If implemented on the computer, Terhardt's model would reqUire more than 

166 words of memory just for the decision table. 

In any case, it would appear that the current concensus is that the ear resolves separately each 

of the harmonics of a complex tone . .The existence of and pitch of these harmonics is sent to 

the brain. The brain then examines them (and the immediate past, presumably) and decides 

what pitches are present. The theory to date is not detailed enough to direCtly code for the 
computer, but it is' somewhat suggestive of promising directions for research. 

It is not Clear what the residue and combination tones have to do with mu'sic perception. Most 

music is polyphonic, which already implies that weak effects like residue and combination tones 

are of secondary importance. 

There is a great deal more literature in psychoacoustics that deal with topiCS that are related to 
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mUSIC to olle degree or another that will not be reviewed here. These include walks all 

consonance and dissonance, timbre, cognitive (high -level) processing, and many others. 
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LOW -LEVEL TECHNIQUES 
INTRODUCTION 

The low-level techniques are those which operate directly on the digitized waveform. They 

belong largely to the realm of digital signal processing. The purpose of these techniq lies, in ollr 
application , is to determine what frequencies are present in the input waveform, how strong 

they are, and over what intervals in time they exist. This is, of course, a statement of the 
variables in our model of musical sound. We wish to determine how many sinusoids are present 

at any given time as well as what the. slowly-varying amplitude ~nd frequency functions are, as 
functions of time. Since we are not interested, for the moment, in identification of the 
instruments, nor are we interested here in synthesis of music instrument tones (synthesis will , 

however, be discussed briefly in the following sections), we do not need to determine these 

functions to great accuracy . 

The routines group themselves into two broad categories: pitch detectors and harmonic 
extractors. The pitch detectors (more precisely, periodicity detectors) take' a signal in and 
produce as output a list of what frequencies are present in the signal as a function of time. 

Pitch detectors work best when the signal is a single periodic waveform, but have some 

application in polyphonic sound. Although any number of techniques have been used as pitch 
detectors in the past [Gold 1962; Gold and Rabiner 1969; Moorer 1974; Miller 1975; Harris and 
Weiss 1963; Markel 1972; Noll 1967; Sondhi 1968; Reddy 1966], we will only deal with two 

autocorrelation -like methods: the optimum-comb method and the autocorrelation function . The 
reason is that these methods are more useful in the polyphonic case than any other common 
methods. The methods that use direct waveform measurement [Reddy 1966; Gold 1962; Miller 

1975J are biased toward monophonic human speech. The spectral flattening methods [Markel 
1972; Sondhi 1968] are based entirely on the assumption of monophony and have no 
application in polyphony. The spectral methods [Harris and Weiss 1963; Noll 1967] have 

various problems and will be discussed individually later. 

The purpose of a harmonic extractor is to produce the waveform, or at least a model of the 
waveform, as a function of time, with all other simultaneous activity eliminated. We will 

discuss two such extractors: the heteroc:iyne filter and bandpass filtering. The heterodyne filter 
is a harmonic~based technique, in that it reqUires that the input waveform be periodic. It then 
returns the amplitudes and phases of each of the harmonics as functions of time. Bandpass 
filtering has no such restriction, but has a problem with resolution of time-detail. There is a 
direct tradeoff between frequency resolution and time resolution with the bandpass filter. This 
is sort of the signal processing enthusiast's "Heisenberg principle" (or perhaps the signal 

processor's own personal albatross!). 

A nd then there are all the methods that didn't work. These are, ' of course, far too numerous to 

detail in one lifetime, but three of the more important failures are discussed. 
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Th e t ~chnlqll es that were found useful are interesting in their own right, but they must be 

mer ged into a unified whole to accomplish anything. The last section of this chapter deals with 

th e a lgorithms L1 sed to weave meaningful threads through the data. 
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METHODS FOUND TO BE USEFUL (AND WHY) 

THE AUTOCORRELATION FUNCTION 

INTRODUCTION 

The autocorrelation function is one of the. oldest and best understood signal-processing 
techniques. It is defined as follows: 

co 
(7) A ('T) = 5 F ( t ) F ( t +'T) d t 

Where F (t) is the input waveform at time t, 
and 'T .is the lag time in seconds. 

In the world of sampled-data, we do not have the function from the beginning of time to the 
end, nor do we have the function at all points. For sampled-data systems, there are several 
analogous functions we may use: 

co 
(8) ,Am = ~ 

n=-co 

N-Ill-1 
(9) Am ~ 

n=0 

N-l 
(0) Am =~ 

n=0 

N-l 
nil Am =~ 

n=0 

F n F n+m (discrete analog of (7) ) 

F n F n.m ("windowed" to N points) 

Fn F(n.m) mod N 
("cyclic" autocorrelation) 

Fn Fn+m 
(covariance) 

Where F n is the input waveform at the nth sample, that is, at time nh 
where h is the time between samples 

and In is the lag index in samples, that is, the total lag time is tnh 

We shall use the definition of equation (11). To see what this does to a signal, let us calculate 
and observe its behavior on a pure sinusoid. 



LOW LEVEL TECHNIQUES 32 

N-l 
(2) Am = 2: B sin(nWh+q,) B sin[(n+m)Wh+q,J 

n=0 

Where B is the amplitude of the sinusoid 

W is the radian frequency of the sinusoid 

tP is the phase of the sinusoid 

A nd by the magic of the summation calculus we get: 

. 1 2 { sin{NWh) } 
(3) Am = "2 B N cos(mWh) - sin{Wh) cos [mWh+{N-1l.Wh+2q,J 

This is plotted in figure 4 for certain values of the parameters. By equation (13), we can see 

that Am is periodic with period ~m = 27rlwh. It has maxima and minima that recur with 

that period . As a function of m, it is, in fact, a perfect sinusoid. This can be seen because it is 

the sum of two sinusoids of the same period (27r I wh) with differing' but constant phases and 

amplitudes. The result is another sinusoid . 

Since the a utocorrelation is not linear, superposition does not apply. We cannot generalize by 

inspection . We can, however, compute the autocorrelation of a perfectly periodic waveform of 

arbitrary spectral content. 

N-1 L L 
2: ['2: Bjsin{njWh+q,j)] [~Bksin{nkWh+tPk) ] 
n=t} j =1 k-1 

Where n is the harmonic number, 

Bn is the amplitude of the nth harmonic, 

W is the radian fundamental frequency of the waveform; 

tP n is the phase of the nth harmonic. 

Which comes out to the following: 

OS) A 
. [N{k-j)Wh

J sIn 2 
In . [(k- j) Wh 

sIn 2 

N 1 - cos [mkWh+tP~ +tP .+--- .J 
. • J 2 

. [N{k+jlWh) 
sIn 2 
. J 
sin [ (k+ j) Wh ) 

2 

This expression is plotted in figure 5 for several values of the variables involved. 

---------- -----------------
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FIGURE 4. This is the autocorrelation of a pure sinusoid. The result is, as we would 
expect, a pure sinusoid with a maximum at integral multiples of the period. 
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FIGURE 5. This is the autocorrelation of a periodic signal with 5 harmonics. As we see, the 
result is also periodic, although the harmonic amplitudes are entirely different from those of the 
input wavef0rm. 
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Aga in, it is periodic in tn with period .6.tn = 2T(/wh. Again, the maxima and min ima recu r 

with that period. While this result is no longer a pure sinusoid, it is a harmonic series, and is 

thus periodic. 

It is interesting' also to observe the results when a waveform with missing harmonics is applied. 

Figure 6 shows the autocorrelation of a waveform with only three harmonics, numbers 5, 6, and 

7. The autocorrel ation is still periodic with a period equal to the period of the missing 

fundamental frequency . Figure 7 shows the autocorrelation of a waveform with harmonics 2, 3, 

4,6,8, 9, and 10 present. This ,is what you might get if two notes were present at 300 Hz and 

450 Hz, an interval of a perfect fifth . 

Two inst ruments playing at perfect fifths will produce an autocorrelation with a period eq ual to 

that of a ' fictitious "fundamental" period. 

With this theoretical base; let us see what this function does with actual music waveforms. 

lJSAGE 

We see in figure 8 the waveform of a trumpet playing an G4, roughly 392 Hz. This wav eform 

and the next were taken from a recording of Ravel's orchestration of Mussorgsky's Tableaux 
D'une E x position. T.his is the first note of the piece. We can easily see that the period is near 

2.5 milliseconds. What small deviation exists is due to inaccuracies in the rotational speed of the 

turntable. In fig'ure 9 we see equation (11) evaluated for 3.5 periods of the input waveform. 

We see that the output is periodic also with period of about 2.5 milliseconds. 

In fi gure 10 the waveform of the first brass chord of the piece. This is a G-minor triad. The 

note, G, corresponds to a frequency of about 98 Hertz, which is slightly over 10 milliseconds in 

period. The evaluation of equation (II) for this waveform is shown in figure II. The greatest 

max ill1u III is clearly at about 10 milliseconds. This demonstrates the principle of determining 

the harmony of a piece of music without determining what notes are being played at arty given 

time. 
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FIGURE 6. The autocorrelation of a periodic signal with only three harmonics: the 5th, 6th, 
and 7th. The autocorrelation is periodic with a period equal to the missing fundamental of the 
waveform. 
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FIGURE 7. The autocorrelation of a periodic signal with only harmonics 2, 3, 4, 6, 8, 9, and 
10 present. This is what would occur, for instance, if two tones at 300 Hz and 450 Hz were 
present simultaneously. This represents the musical interval of the perfe,ct fifth. Any two tones at 
this interval will produce a periodicity in the autocorrelation equal to an implied fundamental period 
of the composit waveform. 
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FIGURE 8. A segment of the waveform of a solo trumpet in a highly reverberant 
env ir onment. This was taken from a recording of Tableau D'une Exposition. 
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FIGURE 9. The autocorrelation of the waveform shown in figure 8. As we would expect, it 
is periodic with the same period as the input waveform. 
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Figure 10. A segment from a recording of a brass choir. This is a root-position G-minor 
chord taken from a recording of Tableau D'une Exposition. 
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Figure 11. The · autocorrelation of the waveform shown in figure 10. It has maxima at 
multiples of 98 Hz, representing the low G2 root note. 
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THE COMB FILTER 

DEFINITION AND ANALYSIS 

A nothE'r fun ction that is closely related to the autocorrelation function is the magnitud e of th e 

output of a comb filter whose delay is swept over some range of interest. This was d iscussed by 

Moorer [1974) and by [Ross et al 1974]. 

A comb filter is defined by the following difference equation: 

Where Xn is the nih sample of the input waveform, 

and Y n is the nih sample of the output waveform 

There are , in fact three other thing's that are called comb filters. The first is produced by 

chan gin g- the subtraction to an addition. The other two are formed by delaying and 

differencin g the output rather than the input. We will only discuss the form shown in equ ation 

(16). 

It is easy to show that the magnitude-frequency response of the comb filter as defined above is 

(17) {sin 2 (tllwh) + [l-cos(tnwh)]2}1/2 

This comb filter has a zero of transmission at frequencies which are integral multiples of I/tnh 

Hertz. Thus, if the input waveform is a stationary signal consisting of nothing but frequencies 

which are multiples of I/tnh Hertz, the steady-state output of the filter will be identically zero. 

What we do is to sum the magnitude of the output of the filter for some number of points, say 

k points. The minin'la in this sum represents periodicities present in the input waveform. This 

slim may be written in the following manner: 

k-l 
(18) 2: I Xn+1 -Xn+i_m I 

i=0 

This is related to the autocorrelation function as defined in equation (II). In fact, it is 

approximated by the following function [Ross et al 1974): 

(9) (A-A)I/2 e m 

Where Am is defined by equation (10. This shows that where Am has a maximum, equation 

(18) will show a minimum. Computationally, equation (18) is easier to compute than equation 

(II) because it involves only additions, no multiplication or division. 

~. 
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llSE FOR DETERMINATION OF HARMONY 

A program was written using the comb filter as the fundamental technique for the purpose of 
determining the harmony of a piece of music. Figure 12 shows a display of the results of this 
program when applied to the first brass choir in Tableau D'une Exposition. The graph shows 
time in milliseconds on the horizontal axis and frequency (actually. inverse period) on the 
vertical axis. The vertical axis is period in seconds. but it is labeled in frequency. This places 
the highest freq uency (smallest period) nearest the origin and the lowest freq uency (largest , 
period) is at the top. The heavy squiggly roughly horizontal lines represent minima in the 
evaluation of equation (I O. The equation was evaluated every 10 milliseconds throughout the 
excerpt. The minima in adjacent time slices which were extremely close in freq uency were 
linked into lists. The beginning of each list is denoted on the figure by a vertical stroke. The 
long. light horizontal and vertical lines were placed there by hand as a gUide to interpretation 
of the figure. The vertical lines denote the places where the chords change. as determined by 
hand (by ear?) by the author. The horizontal lines point out some selected freq uencies. The 
names of the chords have been placed above the graph as a guide to interpreting the data. One 
attribute which is used by subsequent . programs but is not shown here is the depth of the 
minimum. M any of the traces are weak and will be subsequently ignored. 

One of the interesting features is that the first G minor triad produces a strong trace on the low 
,G natural. but the second G minor triad produces a strong trace on the low Bb. This is because 
on the second G minor triad. the Bb is doubled in the trumpets. giving it much more strength. 
The score of the first few bars of the piece is shown in figure 13 for reference. ' 

One thing to notice is how the traces often continue to run on after the chord has changed. 
This is because the recording was made in an extremely reverberant environment. The tones 

continued to ring long after the chord changed. 

There are many other traces for each chord than just the root of the chord. These other traces 
are subharmonics of the notes in the chord. They are clear to see in figure 14 as all the other 
minima. One must remember that any periodic component of the waveform will produce some 
kind of minimum in equation (11). The minima get deep when the periods are rational 
multiples of one another. Then their subharmonics will coincide to produce a deep minimum. 

To demonstrate both the power and the limitations of this method for determining harmony. 9 
test chords were synthesized and processed. The first was a C-major triad in root position. The 
results are shown in figure 15. We see a strong minimum at slightly over 15 milliseconds. which 

is somewhat over 64 Hertz. which is about C2. This is as if the notes of the chord were the 4 th
, 

5th• and' 6 th harmonics of C2. 
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When we acid al1 A 4 to the chord, the chord becomes ambiguous. It is the superposition of a C 

triad and an A -minor triad . This chord is usually referred to as an A-minor seventh chord . A 

major sfZlfnrll chord produces unambiguous deep minimum, because the major seventh chord 

represents the ,tlh, 51h, 6 th, and 7th harmonics of the root (even though the 7th harmonic is lower 

in frequency than is commonly used in the major seventh chord). 
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FIGURE 12. This shows the output of the optimum-comb pitch detector when applied to the 
first brass choir in Tableaux D'une Exposition. The minima in adjacent time slots have been linked 
together into lists. There is a vertical stroke at the beginning of each list. The horizontal axis is 
time ih mi ll iseconds. The vertica l axis is period, but is labeled in frequency. This means that the 
labelings in frequency are not equally spaced and the highest frequency (smallest period) is at the 
origin. Naturally, the scale goes asymptotic at zero period (infinite frequency). To help in 
ev aluating the results, light vert ical bars have been placed at the places where the chords change. 
The chord names have been printed at the top of the f igure. The light horizontal bars denote 
some important frequencies for comparison. The strongest traces seem to occur when notes are 
doubled in the orchestration. Compare this plot to figure 13 which shows the score of the first 
part of the piece. 
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TABLEAUX D'UNE EXPOSITION 
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Copyright 1929 by Edition Rune de Muslaue 
Printed by arrangement Boosey & Hawkes Inc., New York. 

FIGURE 13. This is the first page of Ravel's orchestration of Mussorgsky's Tableaux O'une 
Exposition. The original piano score is shown at the bottom. This is from the Boosey & Hawkes 
poc!-',et edition, 1929. 
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FIGURE 14. This is the results of applying the optimum-comb to the first chord of the 
brass choir in Tableaux D'une Exposition~ The chord is a G-minor. The principal minima are 
subharmonics of G2 (about 98 Hz.). 
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TIME IN SECONDS 

FIGURE 15. Equation (18) applied to C-major chord in root position. The notes In the 
chord are C4, E4, and G4. We see a distinct minimum at 15.5 milliseconds, which is C2. 

o 
o O. 1[-91 0. 2 [- 0 1 0.][-01 O. H - OI e.5( - 61 

TIME IN SECONDS 

FIGURE 16. Equation (18) applied to a C-major-si xth chord in roo t posit ion. The no tes in 
the chor d are C4, E4, G4, and A4. Since this chord is ambiguous, no strong rnini rnurn occ urs This 
chol-d is usually called an A-minor -seventh, in which case this chord is in the first inve rsion. 
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The minor seventh chord does not have such a clean correspondence to the harmonic series. 

The minima in the comb filter output for ambiguous chords are subharmonics of the notes of 

the chord. This is shown in figure 16. When we apply the formula to a C-minor triad, we get 

two strong minima. One is at F 1, which makes the notes of t.he chord the 6th, 7th, and 9th 

harmonics. The other is at AbO, which makes the notes of the chord the 10th, 12th, and 15th 

harmonics. This is shown in figure 17. In figure 18 we see the results from a C-diminished 

chord. The strong minimum is at Ab 1, which makes the notes the 5th, 6th, and 7th harmonics. In 

figure 19 we see the results from the famous diminished-seventh chord. This is one of the most 

ambiguous chords in common usage. As we might expect, there is no strong minimum. Figure 

20 reports the results for a C-augmented chord. There is a minimum at FO, which makes the 

notes the 12th, the 15th, and the 19th harmonics. Now we have 3 simpler examples. Figure 21 

shows the results from a C-major-nineth chord, figure 22 is for a C-major triad in first 

inversion , and figure 23 if for a C-major triad in second inversion. These three all show strong 

minima: at C2. 

Thus we see that the comb filter can be used to detect and identify any unambiguous chord 

with reasonable accuracy. 
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a 
O. 1 [- 0 1 O.ZE-OI 0.3[-01 8.1£-01 

TIME IN SECONDS 

FIGURE 17. Equation (18) applied to C-minor chord in root position. The notes in the cho rd 
(Ire CLl, Eb4, (lnd G4. There are two strong minima. One at slightly over 23 milliseconds, or 43 
Hertz. Ll3 Hertz is Flo There is another minimum at 39 milliseconds, which is AbO 

~. 1 [ - ij 1 O. ZE-OI 0.3[-01 e. 5[--01 

TIME IN SECONDS 

FIGURE 18. Equation (18) app lied to (l C-diminished chord in root position. The notes in 
the (hard are CLl, Eb4, (lnd Gb4. The strong minimum is slightly over 19 milliseconds, or about 52 
Hz, which is Ab 1. 
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TIME IN SECONDS 

FIGURE 19. Equation (18) applied to C-dimished-seventh chord. The notes in the chord are 
C4, Eb4, Gb4, and A4. There are no strong minima because this chord is. highly ambiguous. 

109 
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9 9.1 E-91 9.ZE-91 9 . 3E-91 8.1E-91 9.5E - 91 

TIME IN SECONDS 

FIGURE 20. Equation (18) applied to a C-augmented chord in root position. The notes in 
the chord are C4, E4, and G#4. The strong minimum is slightly over 46 milliseconds, or about 22 
Hz, which isFO. 
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o 
o 0. IE - 91 O.ZE-al 9 . 3[-91 9 . '1(-91 9.5[-91 

TIME IN SECONDS 

FIGURE 21. Equation (18) applied to C-major-ninth chord in root position. The notes in the 
chord are C4, ELI, GLI, and D5. This chord, like the C-major chord, has a strong minimum at 15.5 
milli~,econds, or 6L1.5 Hertz, which is C2. The traditional definition of the ninth chord includes the 
seventh degree, which in this case would be 8p4. It is ommitted here to help separate the effects 
of the D5, although its inclusion would not greatly perturb the plot nor disturb the location of the 
rninimum. 

lea 

a I I I 
a a. 1[ - 91 9 . Z[ - 91 9 . 3[ - 91 9 .1[- 01 

TIME IN SECONDS 

FIGURE 22. Equation (18) applied to a C-major chord in the first inversion. The notes in 
the chord are ELI, GLI, and C5. The strong minimum is again at 15.5 milliseconds 
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o 0.IE-01 .0.ZE-01 0.3£-01 O.H-OI 
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FIGURE 23. Equation (18) applied to C-major chord in second i~version. The notes in the 
. chord are G3, C4, and E4. This chord, like the C-major chord, has a strong minimum. at 15.5 
milliseconds 
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THE HETERODYNE FILTER 

INTRODUCTION 

This tool is an adaptation of the discrete Fourier transform, hereafter abbreviated DFT. The 

heterodyne filter is used as a filter or operator. It takes a function of tiine as input and gives 

many functions of time as output. It is used to determine the amplitude and frequency functions 

which make up nearly-periodic ~aveforms. More directly, we represent such waveforms as 

follows: 

(20) F 
('( 

M 
'" A sin (nWah+O ) ~ na n« 
n=l 

Where F 01: is the signal at time ah, 

h is the time between consecutive samples, 

W is the radian fundamental frequency of the note, 

n is the harmonic number, 

An-x. is the amplitude of harmonic n at time ah, 

M is the summation interval in samples. For best results, this must be set 

to the number of samples in one period of F 01:' or the closest 

integer to 27"(/ (hw). 

enol: is the phase of harmonic n at time ah. 

This models the waveform as a sum of sinusoids with time-varying amplitudes and phases. We 

mUst insist t.hat the amplitudes and phases vary slowly with time, or the analysis procedure does 

not g:i ve correct results. 

This is not a Fourier series representation, although it looks similar. The Fourier series 

demands that the sinusoids be perfectly harmonic and of constant amplitude. If we allow the 

amplitudes or phases to vary, the sinusoids are no longer orthogonal by summation over one 

period, thus the sinusoids do not constitute a Fourier series. We mention this fact because this 

means that the tone can not be resynthesized by use of the fast Fourier transform algorithm. To 

resynthesize the tone from Anol:' enol:' and W, we must evaluate M sinusoids for every point in 

time. 

The heterodyne filter has its main use in analysis for the purpose of insight into music 

instrument physics and for resynthesis of the instrument tone. It could be used for analysis of 

music that formed unambiguous chords at every paint, that had no notes outside of the chord 

This is the case with very little mUSiC, thus making the filter of little use to the musica.l scr ibe. 

One would be hare! put to find any such music outside of harmony textbooks. 

METHOD AND ANALYSIS 

The method is defined as follows: 



(21) a no: 

(22) b 
nex 

(2,3) ,A not 

(24) (}not 
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ex+N-1 
= ~ F, 

,-ex 
sin (nWe i h+f/le> 

ex+N-l 

"" ~ F, cos (nWe i h+f/lel 

= 

= 

i-ex 

Ut 2 +b 2) 1/2 not not 

atan (8not/bnot ) 

Where W0 is the radian frequency of analysis, 

CP0 is the phase of analysis, 

n is the harmonic number, 

F i is th'e input waveform at time i h 

N is the nearest integral number of samples in one period of the input 
waveform. 

The initial phase angle, 41 0, is included for generality. The method is independent of this phase 

angle. 

The summations are taken over one period of the input waveform. Since N must be an integer. 
we can not analyse for an arbitrary frequency whose period may not be an integral number of 
samples. We must settle for taking the nearest integer. Having chosen the number of samples in 

the 'summation, we must then set W0 to 21T'/Nh. If' this is not done, a very strang~ kind of 

inaccuracy sets in. We will show an e~ample of this presently. 

We apply equations (21) through (24) to the digitized waveform of a single note of constant 
freq uency for each harmonic of the waveform. This produces two output waveforms for each 
harmonic. The waveform represented by Anot in equation (23) corresponds to the amplitude of 

the harmonic as a function of time. The waveform represented by (}not in equation (24) 

corresponds to the phase of the harmonic as a function of time. We may convert this to 
freq uency by taking the slope of the function at each point in time. This may be done with a 
band~limited differentiator (Kaiser 1963. 1966]. 

To better understand what the heterodyne filter does, we may examine its output when a pure 
sinusoid is applied. The heterodyne filter.is a nonlinear filter, so the principle of superposition 
does not apply. Equations (21) and (22), however, are linear. The transformation to equations 
(23) and (21) does not change certain principles. If a signal is annihilated entirely by eq uations 
(21) and (22), it will not be present in the outputs of either eq uations (23) ' and (24). Sign als 
greatly suppressed in equations (21) and (22) will be greatly suppressed in equations (23) and 

(21). 
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If WI' :lpply ;1 IJ II I r: sinusoi d of frequency w, we may compute the output of the heterodyne filter 
ex a etl y by IT IC,I!"iS of the su mmation ca.leu Ius [H amming 1962). 

(25) A 
no: 

1 . 2(WNh} { 2 [(W+nWo)h] 2 [(W-nWOlh] 
sin -2- esc 2 +csc 2 

4N2 

+ ___ ....:2::....;:c;,;:;o.=.,s .:.:.[n,:,::W::"JOoL:,..;,h....:-2::.JpwBo.::..,J ___ I 
. [(W+nWa) h) . [(W-nWa) h ] 

sin 2 sin 2 

The expl"f:,ssioll for the phase is not included here because it is so complex as to be almost 
meanin gless. Equation (25) is plotted in figure 24a. The frequency of analysis was the 5th 
harrnonic of r.l00 Hz. We can see that the response is identically zero for all multiples of 500 H z 
excep·t the 5th . 

It is interestin g· to compute the limit of the exact expressions for the response to a pure 

sinllsoici. If we define 6.w to be (w-nwe), the limits may be computed as shown in equations 

(26) (Inc! (27). 

(26 ) I illl 

W~nWo 

(27 ) lim 

A 
n o: 

'", 1 
4N2 

sin {2nWeh [¥ +a] J + N ·sin {~Wh [¥ +a]} 

cos {2nWoh [N-l +a] } + N cos {~Wh [N-l +a] } 
2 2 

The first important point is that the results are, in the limit, not dependent upon the absolute 
phase of the input sinusoid. A Iso, the magnitude of the output converges to a constant times the 
amplitude of the input sinusoid. The phase converges to a linear function of the frequency 

difference, 6w, if the number of points in the summation, N, is large compared to I. 

USAG E 

The biggest problem with using the filter is that the assumptions upon which it is based are 
rarC'ly tru c. That is, all music instruments have harmonics that change with time, and man y 
have frequ encies that are not exact multiples of the fundamental frequency. Since the principal 
sou rce of error due to these deviations from the ideal comes from "leakage" from adjacent 
harmolll cs, Lhc output may be improved someWhat by further filtering of these harmonics. 
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FIGURE 24. Equation (25) Evaluated for a wide range of frequencies. In this figure, we are 
anal ysing the fifth harmonic of a 500 Hertz tone. This is effectively the frequency response of the 
heterodyne filter for a particular tone. In the lower plot, the output has been smoothed by 
averaging over one period of the fundamental. 
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FIGURE 25 This is equation (25) evaluated, as above, for the fifth harmonic of . a 500 Hertz 
tone and then smoothed by averaging over one period. The upper plot has been smoothed twice, 
and the lower plot has been smoothed three times. 
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Since tllc IrnportCint part of the output of the heterodyne filter is around zero frequency, we can 

simply filter out the harmonics other than the one under analysis by replacing each point in th e 

output by the average over one period of the fundamental frequency . This places an 

additional lero of tr(lnsmission over each other harmonic: Figures 24b, 25a, and 25b show the 

results of Clpplying such a filter once, twice, and three times. The sideband rejection becomes 

qUite strong . We could use a classical filter, like the Butterworth or Chebychev low-pass design, 

but this would not put a zero of transmission at the other harmonics. We feel this feature is 

very importa nt. 

To g'et the slope of the phase function, we replace each point by the slope determined by a 

least-squares fit of a linear polynomial centered around that point. This provides further noise 

reduction by averaging as well as producing a band-limited approximation to the slope at each 

point. 

Figure 26 shows a plot of the amplitudes of the harmonics of a music instrument tone. Time is 

the axis going from left to right (about .5 seconds total), and frequency is depth into the page. 

The first h a rmunic is in the rear. Fig'me 27 shows a spectrog'ram-like plot of this data as well 

as the detailed frequency deviations of each harmonic as functions of time. The analys is 

technique as described so far was used to analyse 16 music instrument tones for a study in 

perception of musical timbre [Grey 1975]. 

Tont's werl' synthesized from these data. Putting the tones in this form al10wed them to be 

normalized Jtldependently for pitch, duration, and loudness, as well as to be modified and 

blended. The synthetiC tones were judged quite similar to the original tones. This is, of course, 

the final test of the analysis procedure. Appendix A shows the results of analysing several 

synthetIC tones to determine how much perturbation the filter can tolerate before producing 

results that ;:ue grossly in error. It would appear that as much as a 2 percent deviation in 

frequency with rise times as short as 5 periods can be tolerated with reasonable results. 

It is of interest to list the ways that this technique has been misused in the past with the hope 

that future users will avoid these problems. 

As was described in the historical review, Luce used a method that was very similar to this, but 

limited by the extreme cost of computer time in those days. He selected single periods of the 

waveform and interpolated them to get exactly 21 points per period. He then did the 

slImrl1ation s to produce amplitudes and phases for 12 harmonics. Note that this method only 

gives one 24 numbers per period, whereas the heterodyne filter gives one 2NM numbers, where 

N is th e number of paints in a period and M is the number of harmonics under analysis . The 

advantCl ge of this extra computation is that a particular difficulty .of Luce's is avoided . The 

followin g quote is from Luce's thesis: 
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FIGURE 26. Perspective plot of analysis data from heterodyne filter for a clarinet tone, shown as 
an ' Amplitude x Frequency x Time perspective plot. The detailed frequency variation of each 
harmonic is not shown here. (X = time; Y = amplitude; Z = frequency, with the fundamental 
harmonic plotted in the background). 

", ".:::,:: 

.. -_ . . ;:......... ... :.,\: ... :: 
',' " 

..•. . :':, ',- -, 

;. " : .\ ..•. -.:.~ .., .... -.... -... ~:.-:-.- ..... -,:,,- , . 

.. .. :: 

,,' .. ',. " ., - ~ .... : .. .. : .. ;. '~'~'~lUt'IIHt ...... ,."~-,., .• -~::' .: ::. .. 
+-";">,-"""'~7-t-''''-, ,'"". " , • 

.'s,,:-.", .. n,MtWh.#I .... .--.:v--. ):~:., 

',', . : ... 
":"'::" " 

............ ; .. 

.... \,' , .',': . .. .. . 
. ··. t· ....... - ,':.:\: .. .. ', . ., 

~.' ~'>I' .:. ~,': .. 
. ... 

FIGURE 27. Analysis data from heterodyne filter for the sarre clarinet tone as in figure 26, shown 
above in the form of a spectrographic plot (X = time, with 1/10 second lines; Y = frequency, with 
KHz lines; Width ,of bars = relative dB to -40). 
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"Another very serious difficulty arises for waveforms containing very 
narrow pulses well-separated from each other if only 24 ordinates per 
cyc le of the fundamental of the note analyzed are used. Two neighboring 
dat a points are used in each interpolation. It is possible that none of 
these 48 data points, corresponding to the 24 points in. time selected for 
interpolation during the cycle, contain the narrow pUlse. Because of this 
phenomenon, a small error in the measurement of the fundamental 
frequency of the note may result in the pulse being missed in some 
cycles entirely and being selected in others. Large fluctuations (from 
cycle to cycle) in the calculated spectral components result." 

By takin g all the points in a period, we avoid this problem. We cannot, however, avoid a small 

(order of lIN) fluctuation due to the fact that the true period is not an integral multiple of th e 

samp lin g inter val. Since this fluctuation is periodic with the same period as the note, the 

further filtering operations eliminate it entirely. 

Pulse-li ke wa veforms are quite common in music. All brass instruments have pulse-like 

waveforms. The human voice is often quite pulse-like. Pulse-like waveforms cannot be ignored 

in musical contexts. 

Beauch a mp a nd Freedman both thought of the summations in equations (21) and (22) as 

discre te ClnCllogs of the Fourier integrals. This is dangerous because it leads one to sum over one 

period, but to use an analysis frequency (We) which does not correspond to a period equal to an 

integL~ 1 rnultipl e of t.he sampling interval. This produces imperfect pole-zero cancellation Cl nd 

all the resultin g; distortion . They too obtained only "a few" points per period, letting themselv es 

in for t he sa me kind of errors Luce's method obtains. 

Beauchamp later used the FFT algorithm [personal communication 1974] with a Hamming' 

window. The Hamming window is equivalent to a convolution in the frequency domain . It is 

equivalent to replacing each frequency-domain point (anoo bne..) with the sum of itself and a 

portion of its neighbors [Bertram 1970; Blackman and Tukey 1959). This means that "leakage" 

between acljClcent harmoliics, that very problem we have tried so hard to filter out, is directly 

encouraged by the application of a window function. Figures 28a and 28b show the frequency 

respon se of Cl f ilter designed this way. The zeros of transmission at the neighh.oring· harmonics 

have b een removed. This method cannot possibly produce accurate results. 

This tec hniqu e can be salvaged by doing the analysis at one-half the frequency (twice the 

period). This will produce an output that has only even harmonics, indicating a tone an octave 

high . This WCl.y , when we analyze for a certain harmonic, the adjacent "harmoniCS" will, of 

course, be zero, because the odd harmonics will be zero. This way, anything the techniq ue 

produces on the odd harmonics can be ignored as artifacts of the analysis. 

Keeler [ 1972J used Lagrangian interpolation to produce a much higher effective sampling rate 

a nd t h ell computed an approximation to the Fourier integ'ral by use of Simpson's rule. Even if 

we ig nore the fact that the Lagrangian interpolation does not have good band-limiting 
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properties [Schafer and Rabiner .1973]. there is a severe problem with the use of Simpson's rule 
rather than direct summation when considered from a signal-processing point of view. 

With Simpson's composite rule, the successive samples are' weighted by the following 

coefficients: 2, 4, 6, 4, 6, 4, .. . ,4, 6, 4, 2. The weighted samples are then summed. The problem 
is that this is equivalent to the sum of three separate weights: 

first: 
second: 
th i rd: 

2, 2, 2, 2, 2, 2, 
0. 2. 2. 2, 2. 2. 
0. 0, 2. 0. 2. 0. 

• • • t 2, 2 
. . " 2. 0 

" 0. 0 

We see that the first sequence is pure summation. The second sequence is a summation, but 

over N-2 points; a different fundamental frequency. The third sequence has every other 
sample zero, which is characteristic of a sampling rate a factor of2 slower. This means that 
massive aliasing occurs, as well as annihilating the zeros of transmission. Figure 29a shows the 

frequency response of such a filter. We can see the aliased band up in the high frequency 
range, as well as the fact that the response no long'er goes exactly to zero at every other 

harmonic. Probably the only reason that Keeler got as good results as he did is because he was 

analysing large organ pipes, which presumably had few high harmonics, and thus little aliasing. 
Figure 29b shows what happens if just a straight triangle rule is used. The plot does not show 

it, but the minima in the frequency response are not actually zeros of transmission. The use of 

the triangle rule has made the response non-zero at each of these points. This is because it is 

equivalent to the sum of two weightings,. one of length N and one of length N-2. 

Thus we see that there are a number of ways of doing this process incorrectly. It is hoped that 
this exposition will help others to find even better methods. 
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FIGURE 28. This is the magnitude frequency response of the heterody ne filter w hen a 
"Hanning" window function is applied. Since windowing in the time domain is equiv ale nt to 
convolution in the frequency domain, the spectral zeros at the fourth and sixt h harmonics go away. 
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FIGURE 29. Thi s is the result of approximating the Fouri er integral by Simpson's composit 
rul c. An effective halving of the sampling rate and corresponding aliasing occurrs. The lowe r p lot 
appr oximates the integral by the triangle rule with somewhat better success. 
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BANDPASS FILTERING 

INTRODUCTION 

The bandpass filter is one of the oldest techniques for separating out a single harmonic. 

Backhaus [1927, 1932] used a bandpass filter for studying individual harmonics of music 

instrument tones, notably the violin. The bank-of-filters method of speech analysis has · been 
widely used . There is much evidence that the basilar membrane in the ear is like a bank of 

bandpass filters. 

We will not attempt to repeat the wealth of literature that exists on linear systems and linear 
filters , but let us just review some basic principles of filtering in general. 

The output of a filter consists of its particular response and its homogeneous, or transient 
response. The particular response is directly related to the input signal. In fact, the spectrum of 

the particular response is just tlie product of the spectrum of the input signal and the frequency 

response of the filter. The transient response is, however, somewhat more complicated. 

Any linear filter has what are called natural frequencies. These can be resonances or anti­
resonances. The transient response of a filter is made up of sinusoids of these frequencies. 

There is a relation between the frequency selectivity of a filter and how fast it can respond to 

changes in the input signal. A very narrow-band filter has a very long transient response and 
changes very slowly. This is illustrated in figures 30 and 31. In the first figure, we see the 
respon'se of a very narrow band filter to a suddenly-applied pure sinusoid. The second figure 

shows the response of a wide-band filter to a suddenly-applied sinusoid. With this in mind, let 
us see how the bandpass filter can be used in practice. 

USAGE 

If we suspect that a harmonic exists at a certain frequency, we can use a bandpass filter to select 
it from a complex signal, with some ensuing loss of resolution in time. In fact, unlike the 

heterodyne filter, any sinusoid of nearly-constant frequency can be selected. It does not have to 

be harmonically related to any other sinusoids in the signal. Figure 32 shows, in the top plot, 

the response of a 4th order bandpass filter (Butterworth, 30 Hz between the 3dB points) to a 
complex signal. The center frequency of the filter is set to exactly the frequency of one of the 
harmonics of the signal. Notice the smooth amplitude envelope of the harmonic. The upper 
plot in figure 33 shows the output of a filter with the same input as the previous figure but its 
center freq uency does not correspond to any partial in the input signal. The response consists 
almost entirely of transient response. The particular response is highly suppressed, as it should 

be. 
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FIGURE 30. The' response of a narrqw bandpass filter to a pure sinusoid applied suddenly. 
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FIGURE 31. The response of a broad bandpass filter to a pure sinusoid applied suddenly . 
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FIGURE 32. These three plots show steps in the processing of the fundamental harmonic of 
a piano tone in a piano ·duet. The upper plot shows the response to a bandpass filter the center 
frequency of which coincided closely with the frequency of the harmonic. The center plot shows 
the results of applying the optimum-comb to the waveform in the upper plot. The minima in 
adjacent time slices have been linked by a nearest-neighbor rule to form lists representing the 
frequency of the signal as a function of time .. A vertical stroke has been, placed at the beginning of 
each list. The lower trace shows the results of eliminating obviously spurious frequency lists. The 

. dominant list has a horizontal line drawn through it representing the average frequency of the 
harmonic. The vertical strpke at the beginning of this line is two standard deviations high. 
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FIGURE 33. This figure, like the previous one, shows the processing of a single harmonic 
extracted from a polyphonic piece by a narrow bandpass filter. The upper plot shows the output 
waveform of the filter. The center plot shows the results of the application of the optimum-comb 
to deled any periodicity which may be present in the filter output waveform. The minima of the 
optimum-comb have been linked together to form lists. In the lower plot, obviously spurious traces 
have been eliminated. The remaining list has a horizontal bar through it denoting the average 
frequency in the list. There is, in fact, no sinusoid present at this frequency. Thi s is a transient 
respo nse and is entirely an artifact of the bandpass filter. This trace will hopefully be ~ Iimina ted 
later due to it s large frequency variation. 
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We may apply a pitch detector to the output of the bandpass filter to get the freq uency of the 

harmonic as a function of time. This is also a good way to tell if there is really something there 

or not, because the output of the pitch detector will be gibberish if there is not a near-sinusoid 

present. The center plot in figures 32 and 33 shows the output of a pitch detector (the optimum 

comb) applied to that output of the bandpass filter shown in the upper plot. As we see, the 

freq uency varies smoothly throughout the duration of the plot. If no harmonic is present, we 

do not get a consistent reading of pitch throughout the duration of the Signal, thus no trace like 

the one shown is produced. 

If the center frequency of the filter is very low, it is possible that the pitch detector can track 

sub-harmonics of the lowest harmonic in the sound at that point. Some of this low harmonic 
will sneak through the filter and fool the pitch detector. As was shown before, the 
autocorrelation-type pitch detectors respond just as welt to integral multiples of the fundamental 
period as to the fundamental period itself. Figure 34 shows multiple traces of subharmonics of a 
harmonic produced by the optimllm-comb technique. To eliminate the spurious traces (all of the 

traces in this figure are spurious), we may make some other crude measurement of the pitch 
which does not have this problem and compare the results. One simple technique is just to 
count the zero-crossings in the filter output. This provides a crude estimate of the pitch of the 

signal and is enough to eliminate the spurious traces. 

To use the filter, we must know how to set its center frequency. One convenient method is to 
use a pitch detector (autocorrelation and comb filtering have been previously described) to get 

an estimate of the harmony of the signa\. Since music uses ambiguous chords, we may expect 
several Significant pitches to be indicated. We may then apply bandpass filters to all multiples 

of these pitches, up to some maximum. This will get approximations to the harmonics with 

limited resolution in time. We may then apply a pitch detector (again, autocorrelation or comb 

filtering wilt do) to get the frequency of the harmonic as a function of time, and we may 
average the- energy of the signal to estimate the amplitude of the harmonic as a function of 
time. The bottom plot in figure 32 shows the final frequency contour of a harmonic of a 
complex signa\. The straight line through the plot indicates the average frequency of the 
harmonic. The vertical bar at the beginning of the horizontal line is two standard deviations 
high. Figure 35 shows what happens if the center frequency of the filter is not exactly upon 
the frequency of the harmonic. This trace was not accepted, as is shown by its absence from 
the lower plot. The frequency deviation throughout the trace was unacceptably great. 
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In practice, the use of a pitch detector to determine which bandpass filters to apply only reduces 

the number of applications of the filter by a factor of about 3 from a dense covering. For 

example. a 30 Hz bandwidth was used in the analysis progTam. A dense covering from 100 Hz . 

to 2000 Hz would be about 200 applications. In fact, only about 75 applications were need ed. 

This is still a lot. It is enough so that this method of analysis can hardly be called practical at 

this 'point in time. Perhaps with the advent of high-speed special-purpose signal processing 

hardware, the method may become more than a demonstration. It should be noted that just as 

much time was spent doing the pitch detection on the filtered waveform as was spent doing the 

filtering- itself. 
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FIGURE 34. This figure is similar in format to the previous two. This shows the results of 
applying a bandpass filter · at a very low frequency. The filter does transmit the lowest sinusoid in 
the signal greatly attenuated. The optitylum-comb cannot by itself distinguish subharmonics of the 
filter output, so it finds many minima: These are linked into lists and shown in the center plot. A 
vertical stroke is placed at the beginning of each list. To eliminate subharmonics, we count the 
zero crossings in the filter output. This gives a rough pitch estimate that is sufficient to eliminate 
all the spurious subharmonic traces, as is shown in the bottom plot. 
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FIGURE 35. Here we see the results of applying a bandpass filter the center frequency of 
w hich does not correspond to any partial in the piece at that time. The filter, of course, passes in 
att enuated form the composit waveforms of the neighboring partials .. The optimum-comb found 
some minima to track, as is shown in the center plot. Since the list of frequencies found by the 

. optimum-comb is highly variable, it can be eliminated on this basis alone, as is shown in the lower 
plot . 
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POPULAR TECHNIQUES NOT FOUND USEFUL 

INTRODUCTION 

In this section , we will expose some of the weaknesses in other popular signal processing 
techniques that make them not useful for the musical scribe. We present these negative results 
for several reasons, perhaps the most important being the fact that the science and art of digital 

signal processing is new enough that a great deal of experience with its techniques has not had 

time to accumulate. Each of the techniques to be discussed has been found to be very useful in 
general. The linear predictor forms the core of most speech analysis systems in use today. The 

FFT is the "workhorse of the industry". The cepstrum is useful in speech as well as · picture 

processing, sonar, radar, and many others. 
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THE CEPSTRUM 

INTRODUCTION 

The cepstrum is defined as the inverse DFT of the log of the magnitude of the DFT of an 

input signal. This may sound a bit perverse, but if we recall that the autocorrelation of two 

time-limited si gnals can be computed by the inverse DFT of the magnitude of the DFT of an 

input signal, we can see that the processes are related. The cepstrum of a signal is a signal (a 

fu.nction of (imt:) whose DFT is the log-magnitude of the DFT of the input signal. The cepstrum 

is a time sequence, just like the signal itself, and also like the autocorrelation function. 

The cepstrurn is useful for dealing with signals that have been multiplied or convolved with 

other signals. For instance, we may think of the speech production mechanism as an excitation . 

(the g lottis) followed by a filtering operation (the vocal tract). In picture processing, the signal 

can b e represented as the excitation (the light source) multiplied by the reflectance function of 

the Illuminated object. In each of these cases, the log-magnitude DFT is related to the sum of 

the transforms of the individual signals. If these signals, by themselves, occupy different parts 

of the spectrum, then they can be separated by simply partitioning the cepstrum. In t h is 

manner, we may use the long-time end of the cepstrum to detect the pitch of a speech waveform 

[Noll 1967J. or the short-time end of the cepstrum to compute an approximation to the impulse 

response of the vocal tract [Oppenheim 1968, 1969; Miller 1974). In speech, the signals 

separa te nicel y. 

One pl ace wh ere the cepstrum may be of great use in music is in analysis for the purpose of 

synthesis . Since we can separate the functions of periodicity generation from spectral shaping 

with th e cepstrum, we may use it to generate the impulse response of a filter which can 

duplica te, as a function of time, the spectral shape of the waveform of a music instrument. 

S in ce a number of instruments are almost perfectly periodic (brasses, most woodwinds ex cept 

during the attack), it may be possible to synthesize many tones using these impulse responses. 

There a re, however, a large number of instruments which are not perfectly periodic (all stringed 

instru me nts) and are thus not suitable for simulation in this manner, unless some technique fo r 

cieri v in g and modeling the excitation function is found . (We can compute the excitation 

function s imply from the long-time part of the cepstrum, but unless we can model it more 

simply, it is not amenable to modification and is thus not useful for musical purposes). 

DISCUSSION 

The p roblem with using the cepstrum to compute, say, the pitch of music instruments is that in 

polyphonic music, we are4 dealing with the sum of a number of waveforms. When we take the 

log of th e ma gnitude of the DFT of the input Signal, we get a very complex result wh ere the 

signals d o not partition nicely . The information for each voice is spread all over the cepstrum 

in complex ways. For instance, figure 36 shows the cepstrum of a single violin tone. Notice the 

single pea k corresponding to the period of the input signal. 
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FIGURE 36. This is the cepstrum of a segment of the waveform of a trumpet solo. The 
waveform was taken from the first note of Ravel's orchestration of Tableaux D'une Exposition. The 
note is a G4, or about 396 Hz. As we see, a single peak is evident at about 25 milliseconds, which 
represents the period of the detected signal. The cepstrum is quite insensitive to reverberation, 
as the trumpet was recorded in a large concert hall with extensive reverberation. 
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FIGURE 37. This is the cepstrum of a segment of the waveform of a brass choir . The 
wavef(Jrm was taken from the first brass chord of Ravel's orchestration of Mussorgsky's Tableaux 
D'une Exposition. The cepstrum does not seem to produce a distinct peak corresponding to any 
periodicity in the input signal in this polyphonic case. 



70 

Fig·url.' ".7 ~ . hnw ~ tile (epstrllrn of two violins being played atdlfferent frequencies . The peaks 

no lon g"r U)J'iI'spond to freq uencies in the original signa\. There is no clear way to ex tract from 

the (epst rum th e information about the pitches of the two notes being played. 
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THE DFT 

INTRODUCTION 

The Fourier transform in all its many forms is possibly the oldest and most widely useful signal 
processing technique of all. Special processors to compute the OFT by the Fast Fourier 

Transform algorithm [Cochran et al 1967; Gentleman and Sande 1966; Gold and Rader 1969; 
Rabiner and Gold 1975; Oppenheim and Schafer 1975; Singleton 1967, 1968, 1969J are 

available from numerous sources. When we began this project, the OFT was the first 
technique called upon to help accomplish the task. It was later abandoned for reasons that will 

be explained below. It may, in fact, be possible to accomplish the task at hand with the OFT, 
but certain problems would have to be solved which did not seem to have simple solutions. 

DISCUSSION 

Let us begin by examining the OFT of a pure sinusoid with an exponential amplitude. The 
(complex) signal that we shall transform is as follows: 

(28) S = en (O"+ jW) T 

" 
Where Sn is the value of the sinusoid (the input signal) at time nT, 

where T is the time between consecutive samples 

0" is the decay rate. 1/0" is .the time constant of the signal, i.e., the time 

it takes the signal to decay to 1/ e of its value at time=0. 

W is the radian frequency of the sinusoid. 

j is the square-root of -1. 

The transform can be computed as follows: 

N-l N-l 
(29) Ak ~ s"e-2nnkj/N = ~ en {(0"+jW)T-27rjk/NI 

"-8 

Ak is the k th value of the discrete Fourier transform. It represents the 

frequency k/ (NT) . 
N is the number of points in the transform. 

Since this is just the sum of a finite exponential series, we can compute this summation in 

closed form: 
e {N(O"+ jW) T -27r jkl _ 1 

(30) Ak = 
e {(O"+ jwJT -27r jl<./NI _ 1 

A fter some manipulation, we find that the squared magnitude of this expression is then the 

following: 

e (N-lJ O"T 9 i nh2 (NO"TJ +9 i n2 (NwT -27rk) 

s i nh2 (O"TJ +9 i n2 (£OT -27rk/N) 
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It is easy to show that this expression is maximized when the following is true: 

NwT 
, (32) k = 

27f 

This rnaXlImlm is unique in the range 0~wT~Td2. We can see from the expression above that 

the peak widens as N gets smaller and as (j' gets larger. Figure 38b a shows equation (32) 

eva lu ated for N=128, figure 38d for N=2048, and figure g8f for N=15384. We see that as N 
is increased , the peak becomes sharper and sharper. 

Figures 38a, 38c, and 38e show the actual DFT of a pure sinusoid at 314.159265 Hz evaluated 

by the fast Fourier transform algorithm for 128 points, 2048 pOints, and 16384 points. The 

results differ from the calculated values because of roundoff error. In the longer transforms, the 

error manifests itself as a spreading of the peak. It is roughly analogous to a multiplicative 

noise (rather than an additive noise). 

Likewise, figures 39a, 39b, 39c, and 39d show the spreading of the peak as (j' increases. The 

reciprocal of 0- is the attack time in seconds, so (j' increasing means faster and faster attack. A 0-

of 100 implies a 10 millisecond attack, which is quite common in music waveforms. 

These cases were idealized. In general, the attack is not a pure .exponential. Figure 40 shows 

the DFT of a segment of a 2·voice piano piece. The time window is centered over the 

boundary between two notes. The lower voice persists throughout the window at a constant C4 

(261.6 Hz). The upper voice is ch.anging between an E4 (329.6 Hz) and an F4 (349.2 Hz). It is 

clear that the region around the E4 and the F4 is quite muddled with many peaks in evidence. 

Thi~ DFT used 4096 points and occupied about 200 milliseconds width in time. 

There is another problem with the use of the DFT for sounds that were recorded in highly 

reverberant rooms: In this case, the effect of the room can be modeled by a linear time· 

invariant filter. The music is then convolved with the impulse response of the room. This is 

equivalent to multiplying the transform of the music by the frequency response of the room (or 

adding the logarithms of the transforms). Since it is well known that concert halls have 

frequency responses with many narrow peaks and valleys of depth up to 20 and 30 dB 

[Schroeder 1 %2, 1962, 1970], these peaks and valleys can produce spurious peaks in the DFT 

of music recorded in such a room. 

Figure 't I shows the DFT of a 200 millisecond segment near the center of the first block chord. 

This chord is a G-minor chord. It has notes at G2 (98 Hz), G3 (196 Hz), Bb3 (233.1 Hz), D4 

(293.7 Hz), Clnd many more. We can notice many spurious peaks. In the region of the Bb3 

(233.1 Hz), there is an extra peak that is only 5 dB lower than the main peak. The same is true 

of the G3 (196 Hz). 

For th ese reasons, we decided not to use the DFT in this investigation . Later on, we show cases 

where we Lised the DFT as the front end of a hypothetical music analYSis system and compare 

the results with our preferred implementation. 

---------------------------------
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FIGURE 40. Discrete Fourier transform of a 4096 point (200 millisecond) segment of a 
piano duel. The time window is centered over the boundary between two notes. The lower voice 
persists throughout the window at a constant C4 (261.6 Hz). The upper voice is changing between 
an E4 (329.6 Hz) and an F4 (349.2 Hz). The region around the E4 and F4 is quite muddled with . 
many peaks in evidence. 
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FIGURE 41. Discrete Fourier transform of a 4096 point (200 millisecond) segment selected 
from the center of the first G-minor brass chord in Tableaux D'une Exposition. Some of the 
principle notes present in the chord are G2 (98 Hz), G3 (196 Hz), Bb3 (233.1 Hz), and 04 (293.7 
Hz). This recording was made in a highly reverberant concert hall. Since this is equivalent to 
multiplying the transform of the music with the frequency response of the concert hall, we see 
many superfluous peaks representing the natural modes of the hall. Near the Bb3 (233.1 Hz) there 
is an extra peak that is only 5 dB lower than the main peak. This causes considerable confusion in 
trying to use the discrete Fourier transform for polyphonic music analysis in reverberant 
e nvi ronments. 
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THE LlNEAH PREDICTOR 

INTHODUCTION 

The linear predictor [Atal and Schroeder 1968; Atal and Hanauer 1971; Boll 1973; Griffiths 
1975; Itakma and Saito 1968, 1970, 1971; Levinson 1947; Wiener 1947; Mak houl and Wolf 
1972; Makhoul 1975; Markel 1972] is a technique for computing an all-pole filter the frequency 
response of which best approximates the spectrum of the input signal. It has become very 
popular recently in the speech community because one can approximate the spectrum of a 
speech signal and then determine the formant reg'ions by examining the frequency response of 
this filter . It provides much-needed smoothing of the spectrum, giving quite often clear, 
unambig·lloUS peaks at the formant frequencies. This technique belongs to the world of "system 
estimation", in that the filter thus created models the filtering activity of the vocal tract. The 
linear predictor estimates the system consisting of the resonant regions of the vocal tract. 

DERIVATION 

A simple way to derive one form of the linear predictor was given by Markel [1972], First, we 
defin e a linear finite impulse response filter of the following form: 

(33) A (z) 

Where A (z) is the Z-transform of the filter transfer function. 

Z is the unit time-advance operator 

a i are the coefficients of the difference equation that defines the filt er , 

shown below equation (35). 

If X i is rhe input sequence and Yi is the output sequence of the filter, we may obtain the energy 

in the output of the filter by merely suming the squares of the output of the fiI~er. 

(34) Energy 

and also: 

Where Yi is the output of the filter at time iT. 

M 

Xn + L aiXn_ i 
i,,1 
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A fter substituting (35) into (34), differentiating with respect to ai' setting the energ'y to z.ero. and 

collecting terms, we get the normal equations for the filter coefficients: 

M L L 

(36) l: a i l: Xn_iXn_k - -~ Xn_kXn 
i=l n=8 n. 8 

for k=l, 2, .. . M 

This is a system of linear equati~ns in the variables, the a i. It can be solved in a number of 

efficient ways [Levinson 1947; Markel 1972J. It produces a filter that best reduces the input 
sequence to zero. Such a filter has a frequency response that is the inverse of the spectrum of 

the input signal. We can invert the filter simply by making it an all-pole filter, using the 

coefficients, aj, on the delayed output signal rather than the delayed input signal. This filter has 

a frequency response that approximates the spectrum of the input signal. This is a discrete 
realization of the Wiener-Hopf integral [Levinson 1947; Wiener 1947; Lee 1960], and uses the 
R M S error criterion for optimality. This techniq ue also belongs to a larger topic of "system 
estimation" [Tribolet 1974; Sage and M elsa 1971], where one attempts to infer a linear system 
from its impulse response. A superb review of linear prediction may be found in Makhoul 
[ 1975]. 

USAGE 

This is commonly used in vocoder and speech analysis systems. For vocoder use, the input 

speech is processed for pitch, voiced-unvoiced decision, and . filter coefficients a j• These 

parameters are transmitted to the receiving station. The speech is then resynthesized using a 

pulse train at the computed pitch for voiced excitation, and white noise for the unyoiced 

excitation. The filter then simulates the spectral shaping imposed by the vocal tract. 

This technique can also be used to aid pitch detection . The input signal is filtered by the 
inverse filter . This evens out the spectrum, removing the effects of the formants. The resulting 
waveform is much more pulse-like. This output can then be autocorrelated to produce peaks 
which are much more sharp than those produced by autocorrelating the unfiltered waveform. 

This technique of "spectral flattening" or "prewhitening" does not apply to polyphony. Unless 
the filter is of extreme order, making it expensive to compute, the interleaved harmon ics of the 
notes will not be adjusted equally. The autocorrelation then shows one sharp peak 

corresponding to the dominant tone and a multiplicity of other peaks, corresponding to the 
other tone. 
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FiGURE 42. Frequency responses of filters computed by the linear predictor for different filter 
orders. The top plot is the sound waveform itself. The second plot is the discrete Fourier 
tra'nsform of that sound'waveform. There are two violins playing here. , The sound segment is 40 
milliseconds long. The next plots are the magnitude frequency responses of linear predictors of 
orders 80, 160, 320, and 640 respectively. As the order approaches the number of points in the 
sound sample, the frequency response of the filter approaches the magnitude of the discrete 
Fourier transform of the sound sample. 
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FIGURE 43. Frequency responses of filters computed by the linear predictor for different filter 
orders. As in the previous figure, the top plot is the sound waveform itself. The second plot is 
the discrete Fourier transform of that sound waveform. The· sound segment is 80 milliseconds long. 
The next plots are the magnitude frequency responses of linear predictors of orders 80, 160, 320, 
and 640 respectively. Increasing the size of the sound sample from 40 to 80 milliseconds has the 
effect of sharpening the peaks in the transform. It also lessens the chances that the signal will be 
homogeneous throughout the interval. 
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1\ llothCI" p C1ss ible lIs<lge would be to compute a filter of high enough order that it simulated the 

harmonics themselves as high-Q resonances. Figures 42 and 43 show frequency responses of 

filters of variolls order computed by the autocorrelation method [Markel, Itakura1 As we see, 

the frequency response approaches the spectrum as the order is increased. This points up again 

that the linear prediction algorithm is a spectral matching process [Makhoul 19721 Since the 

DFT · itself has not proved useful in this task, there is no reason to believe that an 

approximation to the DFT would be any more useful. 

G riffitlts [l975J lIsed this method for determining the frequencies of a number of sinusoids 

which were added together. With a 12 pole filter and a 25 dB signal-to-noise ratio, he obtained 

estimates fur the frequencies of up to three sinusoids added together. The error was as much 

as 12 percent, anc! sometilnes peaks were not even located. In our case, we must detect up to 40 

sinusoic!s <1nd determine the pitches to better than 3 percent in all cases. 
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INTERCONNECTION 

OVERVIEW 

The music analysis system as it was implemented for the purposes of this thesis combines the 

previously discussed low-level routines into a complete system. This is done in the following 

steps: 

A n estimate of the frequencies present is obtained by running the optimum-comb pitch detector 
over the entire music sample at 10 millisecond intervals. We call these "windows" into the 

sound file. If a particular period appears in many consecutive windows, a list is made of its 

occurrences. A list is redundant if it is a harmonic of some other list. Redundant lists are 

eliminated . This produces a list of regions which have the same periodicities present. These are 

regions wherein the harmony does not change. These are arbitrarily grouped into larger 
regions so that more data may be dealt with at once. These macro-regions are then used as the 

gUide for the bandpass filter. 

The bandpass filter is set to all harmonics of all the periodicities that are present in a g iven 
macro-region up to a certain maximum frequency. For the examples shown later, a maximum 

. frequency of 1.5 KHz was sufficient. Any more comprehensive system would have to use a 
11H1ch higher frequency range than this. The output of the bandpass filter is run throug'h an 
optimum-comb pitch detector which is swept over the frequenCies in the passband of the filter. 
The minima of the optimum-comb output are linked into lists which indicate the existence of a 
frequency at that pitch over the time that the minima are found . The amplitude envelope of 
the filter output indicates the amplitude function of the harmonic in question. It is these 

amplitu'de and frequency functions that are passed to the intermediate-level routines for scoring 

and grouping into notes. Before we leave this level, many checks are done to throw out traces 

that are ob viously spurious. 

We will first discuss the theoretical basis and the constraints on the music that allow us to 

analyse it in this manner. We wi11 then discuss the details of the algorithms. 
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THEORETICAL BASIS 

To allow this dissertation to be completed in a finite amount of time, certain restriction s hav e 

been pla ced 011 the music that will be allowed. These restrictions, combined with the properties 

of mu sIc instruments, make the problem manageable. These properties and restrictions are 

discussed below . 

ALL TONES ARE NEARLY PERIODIC 

This restricts the class of instruments to woodwinds, brass, strings, a nd some percussive 

instruments (pi ano, marimba , etc). This assumption allows us to infer a note from its harmonics. 

It insures that notes will have harmonics. It does not tell us what the harmonic structure will be, 

or how the harmonic structure changes with time. It can still be that the note will not have a 

firSt h a rmonic (a sinusoid at the fundamental frequency). The note can also consist of a sihgle 

sinusoid . Later, in the intermediate-level processing, further restrictions will be placed on the 

tones. For the low-level, this is sufficient. 

ALL FREQlJENCIES ARE NEARLY PIECEWISE-CONSTANT 

This restr ic tion eliminates strong vibrato, glissandi, and other cases of non-constant pitch . Th is 

a llows ' us to filter out a single harmonic by using a filter of a constant frequency . We are 

assui'ecl that the tone will not jump out of the range of one filter and into the r ange of anoth er . 

V ibr<l to ca n be tolerated up to a pOint, but some intermediate-level routines attempt to mod el 

the sOllnd as having constant frequencies, and would thus make errors if strong vibrato was 

prese nt . 

THE F UNDAMENTAL OF ONE NOTE WILL NOT OVERLAY A HARMONIC OF 

ANOTHER NOTE 

This is very important. If the fundamental frequency of a note is the same as the frequency of 

a harmonic of another note that is sounding at the same time, it appears to be very difficult to 

distinguish this case from the case of a single note with a complex harmonic structure. It is not 

clear how (or that) we distinguish these cases. It is possible that we hear differences in the times 

that the instruments begin, or that we can distinguish because the instruments are invariably at 

slightly different pitches. It is clear that a more advanced transcription system should be able 

to separate the notes in these cases. It is certainly the case that separate vibratos on the tones 

makes them aurally separate much more convincingly. The subject of when a gToUp of 

harmonics fuses into a single percept has not been researched fully in the past. Rather th an 

attempting to solve the problem here, we will finesse it by requiring that the inp u t music no t 

ex hibit that property. Or likewise, if it exhibits the property, we will not ex pect the higher note 

to app ea r in the output rnanuscript. This gives us the property that a set of harmonics 

uniqu e ly im pl y their fundamental. All we must deal with is noise and processi ng error wh ich 

m<l y ca use some harmonic to be missed . We .do not have to try to expand a single set of 

harmonics into more than one note. 
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THE PIECE CONTAINS NO MORE THAN TWO VOICES 

This restriction allows us to compute the musical harmony from the periodicity of the 

waveform without having to worry about whether some voice is lost because it is masked by 

several other voices. When using the diatonic scale, any two notes imply a harmony, thus a two­

voice piece will always imply at least one root frequency, and generally will imply several. 

OTHER CONSIDERATIONS 

We also expect the tones to be smooth. The amplitude and frequency functions of the 

harmonics of music instrument tones vary slowly with time, except during the attack and decay 

portions of the note. Since these portions are relatively short, compared to the total length of a 

note, we need not consider them. This assures us that the amplitude and frequency contours 

will be continuous and will not vary greatly. This is important, because then we can use this 

smoothness cri.teriQn to eliminate noisy traces. This eliminates certain instruments, like drums 

and cymbals, which not only do not have harmonics, but they do not have smoothly varying 

partial tones. This also eliminates heavy reverberation. Recording in a highly reverberant room 

causes · phase and amplitude jitter in each harmonic. Each time a reflection reaches the 

microphone, the attack of the note with all its inharmonicity occurs again. Figure 44 shows the 

amplitude and frequency trace of a harmonic from a piece that was recorded in a highly 

reverberant concert hall. The jitter due to the reflections is quite apparent here in both the 

amplitude and frequency plot. · 

With the above restrictions, we have some hope of accomplishing the task. Let us look now at 
how the routines can coax out the secrets of the input waveform. 
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FIGURE 44. The upper plot shows the waveform of the output of a bandp ass filter 
centered at G3 (196 Hz) on the first brass chord in Tableaux D'une Exposition. The center plot 
shows the pitch as a function of time as tracked by the optimum-comb_ The jitter both on the 
amplitude of the signal and on the frequency is due both to the extremely reve rberant 
ehvironment of the concert hall and the choral effect of having many musicians playing the same 
note (or notes at octaves). The notes and .their harmonics beat highly due to the inev itable 
mistunings among the musicians. Despite this variability, the frequency function is accepted as is 
show n in the lower plot. 
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PRIMARY SEGMENTATION 

We seek first to partition the piece on the basis of its musical harmony. This gives us a gUide 
as to where to look for harmonics. As mentioned before, this can be done using the optimum­

comb as a periodicity detector. 

Figure 45 shows the waveform of two violins playing simultaneously. One is playing B4 (494 

Hz) and the other is playing F.4 (370 Hz). It is difficult to detect any periodicity in the 

wa veform · by direct observation . Figure 46 shows the output of the optimum-comb for the 

above mentioned waveform. We can see strong periodicity at about 4, 8, and 12 milliseconds. 

These correspond to about 250 Hz, 125 Hz, and 62.5 Hz. The F#4 is roughly the 3rd harmonic 
of the 8 millisecond period and the B4 is roughly the 4th harmonic of the 8 millisecond period. 
This shows that the periods detected by the optimum-comb are sufficient to assure that we can 

find the frequencies of all the harm~nics present by taking multiples of · the freq uencies 

represented by those periods. The problem is that there are more periodicities found by the 

optimum comb than are actually needed for this task. Since there does not seem to be any good 
a priori way of eliminating the unnecessary ones, we must settle for doing more work than we 
have to. We can, however, notice that one period is a harmonic of other periods and is thus 
redundant. For instance, in the set 4, 8, and 12 milliseconds, 4 milliseconds is redundant and 

need not be included. 

ON THE OPTIMUM·COMB 

The first pass through the piece is a straightforward application of the optimum-comb 

periodicity detector. There is little of interest here except that there is a way to reduce the 
computation time. If the time step between applications is less than the summation interval, 
then the summation can be broken up into intervals whose length is just the time between 

applications. The total summation may be obtained by summing a number of these intervals, 
thus reducing the computation to a fixed amount, regardless of the total summation width . 

To enhance the accuracy of locating the minimum, the four points around the minimum are 
used to generate a Lagrange polynomial which is then differentiated and the location of the 

minimum extracted . This allows us to get somewhat finer resolution than an integral number of 

samples would allow. 

Consecutive minima which are very close in period are linked together into lists. Figure 12 
shows these lists as determined for the first brass chorale in Tableaux d'une Exposition. The 
only special conSideration here is that loss of a minimum at a single point is tolerated . A list 
remains continuous even though an application of the optimum-comb does not have a 
minimum at that period, but has one in the neighboring applications. 
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FIGURE 45. This is the waveform of a violin duet. One violin is playing a 84 (494 Hz) and 
the other is playing an F#4 (370 Hz). There is no periodicity evident to the unaided ey e in the 
waveform. 
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FIGURE 46. When the optimum-comb is applied to this waveform, it produces the above 
plot. We can clearly see the minima at about 4, 8, and 12 milliseconds. These correspond to 250 
Hz, 125 Hz, and 62.5 Hz. The F #4 is roughly the 3rd harmonic of the 8 mi lli second period and the 
84 is roughly the 4th harmonic of the 8 millisecond period. The frequencies detected by the 
optimum-comb are generally sufficient to assure that all the harmonics of all the nQtes in the piece 
at t hat time are at frequencies which are multiples of those found by the optimum-comb. This is 
ver y important for planning at which frequencies the bandpass filters should be placed. 
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ON THE ESTIMATION OF ROOTS 

These lists are then examined to generate regions. Each region is characterized by a number of 

"roots". A root is a frequency such that a number of the harmonics present in the region are 

integral multiples of the root frequency. Some number of roots will account for all the 

harmonics in a region. For N-voice pieces, only N roots at most are required. We cannot, 
however, tell on an a priori basis which roots form a complete set. We must settle for some 

d up lication. 

The first estimate of the regions is determined just by the beginning and ending times of the 

lists of minima. For each region, the minimum number of frequencies is determined which can 
produce all of the freq uencies in the region. In other words, redundant harmonics are 

eliminated as candidates for the roots in a region. Adjacent regions are then merged if they 

contain the same roots. 

The following is a table that presents the results so far for the first second of a two-violin piece. 

The first column gives the beginning time of the region, the second column gives. the 
freg uencies of the roots found in that region. The third column gives the freg uencies of the 

notes that were sounding during that region, and the last column comments on the roots. 
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T I t1E ROOTS NOTES COMMENTS 
n1S. ) (HZ. ) (HZ. ) 
----------------------------------------------------------
13 1835 1135, 1913 11 th harmonic of 165 Hz 
113 183 Poor approximation to 196 Hz 
213 32 .1 5th subharmonic of 165, 

6th subharmonic of 196 
180 1132 .4 Poor approximation to 165 Hz 
2313 179.8 165, 185 Poor approximation to 185 Hz 
240 20.1 8th subharmonic of 165, 

9th subharmonic of 185 
350 179. 8 
3913 1813 . 8 Approximation to 185 Hz 
41313 185.8 262, 2138 Leftover from last note 

272 Poor approximation to 262 Hz 
4113 1813 

2BB Poor approximation to 2138 Hz 
272 

430 2013 
272 

4413 51 4th subharmqnic of 2138, 
5th sUbharmonic of 262 

450 (12 . G 5th sUbharmonic of 208 
51 

:,213 L12. G 
730 48 252, 220 difference tone between 262 

and 2213 
53 . 7 4th subharmonic of 262 
85.7 3rd subharmonic of 262 

,':-',50 ;?LI 2132, 1913 8th subharmonic of 196, 
11th sUbharmonic of 2132 

53.7 
85.7 

fro m this table, it should be clear that the roots determined by this process are not entirely 

reliable. Th e problem is that there is no way to judge the quality of a minimum produced by 

the optimum-comb method. The exact depth of the minimum is highly variable from 

application to application, depending on the exaCt amplitudes of the notes involved . The 

period estimates do not vary appreciably from application to application. Since we cannot tell 

whether a particular periodicity estimate is better than any other, there is no way to eliminate 

the less useful root estimates. To make sure that no tones are lost, root estimates for adjacent 

regions must be merged before planning the filter frequencies. . 
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BANDPASS FilTERING 

ON LOCA TING CENTER FREQUENCIES 

First, we must determine at what frequencies to apply the filters. This comes from examining 

the estimates of the roots of each region of the piece. The only measure of quality of the root 

estimates is the leng~h of a region . . A long region means that these roots were present for a long 

time. This is evidence that they are not transient phenomena. Based on this observation, we 

form macro-regions by starting with the widest regions and grow outward by absorbing 

adjacent regions until the entire piece is covered. Because of memory limitations, we cannot 

handle more than .5 seconds of sound at a time in the filter routines, thus we cease growing a 

region when it approaches .5 seconds in length. 

To some extent, the procedure described above is an ad hoc one. This is because there does not 

seem to be, at this time, anything better to be done. Since the purpose of locating the roots of 

the regions is to reduce the number of filtering operations over what would be reqUired for a 

dense covering, it is not damaging that we include spurious roots. This just means that we will 

not realize the minimum number of filtering operations. In every case examined so far, some 
savings have been realized, so the procedure seems worthwhile. The average savings seems to 

be roughly a factor of three over the dense covering. 

Once the macro-regions are defined and the roots determined, a list is made of all the 

harmonics of each root up to some maximum frequency. This maximum could have been set as 

high as the Nyquist rate, but was arbitrarily set to include up to the 5th harmonic of the 

highest note in the piece under analysis. This maximum frequency setting does not affect the 

analysis. providing it is set high enough. so that setting it any higher simply wastes time 
without adding to the quality of the analysis. 

This list of candidate center frequencies is examined for redundant entries. An entry is 

redundant if it is within the passband of a filter set at an adjacent frequency. This reduced list 
is then taken as the final list of center freq uencies. 

ON FILTER PARAMETERS 

A bandpass filter is defined by many parameters. For communication value, we use traditional 

filter types: Chebychev. Butterworth, etc [Guilliman 1957; Karni 1966]. transformed to the 

discrete domain by use of the bilinear transform [Gold and Rader 1969]. The resulting filters 

have infinite length impulse responses. The filter coefficients are determined by a program 

which takes the filter specifications and computes the coefficients (see A ppendix B). In 

selecting a filter type and parameters. the considerations are as follows: 

- What is the band width? A bandpass filter attenuates freq uencies outside of its passband. 

We determine the band width by choosing two frequencies which represent the 
endpoints of the passband. 
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2 - What is the attenuation outside of the passband? This determines the order of the filter. 

The order of a filter is an integer. It determines how many natural frequencies the 

filter has. Outside of the passband, the frequency response (before transformation to the 

discrete c!om·ain!) drops off roughly 20 dB per decade (factor of 10 in frequency) for 

each order. Since a bandpass filter has two skirts (places · where the response drops off 

sharply). the effect is halved. That is, increasing the order by 2 causes an increase of the 

attenuation rate of 20 dB per decade on both sides of the passband. 

3 - How close to constant is the response in the passband? This determines how accurate the 

harmonic amplitudes will be as they emerge from the filter. 

The relations among these parameters are complex. Generally, it works like this: the transient 

response is directly related to the band width. It is secondarily related to the attenuation rate. 

The more nCirrow the band, and the faster the falloff, the longer the transient response. There 

is a tradeoff between constancy in the passband and the attenuation rate. In the Chebychev 

filters especi:=tlly, there is a direct relation. The more ripple (distortion) you allow in the 

passband, the grea.ter the attenuation rate. 

Making a chOice of exactly the parameters to use is an exercise in whim, since there is generally 

no "optimum" setting. When thinking about musical sound, we mig·ht conclude that since 

harmonics ;He linearly spaced in frequency, a linear frequency scale is what is called fo r, that 

we should ll1C1intain a constant bandwidth throughout the frequency range, and that center 

frequencies should be placed at uniform intervals. Linear distance, however, on a piano 

key boCllcl reClches frequencies that increase exponentially. This might lead one to think that the 

bandwidth could. be wider for higher frequencies because the spacing of musical notes gets 

wider with frequency. The ear is physically set up on a scale that is somewhat between linear 

and exponential, and since we are mimicingtheear's performance, we perhaps should take 

advantClge of the experimentation that nature has done for us. Figure 47 shows the relation . 

between distance along the basilar. membrane (corresponds to filter bandWidth) with frequency. 

It is eleClr that this relation is not simply logarithmic or simply linear. The vertical axis on the 

plot .represents what is called "tonalness" (a poor translation from the German) and is measured 

in "Barks", Clfter the great researcher Barkhaus. Tonalness represents critical bandwidths in the 

eelI'. If we think of the ear as a band of bandpass filters, a critical band is analogous to . the 

band width of the filter . For instance, two sinusoids will sound roug·h if their frequency 

sepell"Cltion is smaller than a · critical bandWidth, and will sound smooth for frequency 

separations wider than a critical bandwidth. A difference of 1.0 on the tonalness scale 

represen ts one critical bandwidth. This corresponds to equal lengths along the basilar 

membrane. 

However. the program currently uses a linear frequency scale. The bandwidth is set to a 

constant 20 Hz throughout the range, which extends from about 80 Hz to about 5000 Hz. It 

would be ve r y interesting to use the biological model and see if good results were obtained and 

time was saved. This experiment is deferred for the time being. 
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FIGURE 47. This is a plot of length along the basilar membrane versus frequency (after 
Zwicker). The vertical axis label is called "tonal ness" and is measured in "barks" (after Barkhaus). 
One bark corresponds to one critical bandwidth. Thus this curve gives us the frequency resolution 
of the ear. Note that a critical bandwidth is not the inherent bandwidth of the hairs along the 
basilar membrane, but is a much more narrow bandwidth which is hypothesized. to be. a 
consequence of the neural interconnections of the hairs. The point is that the curve. IS neither 
exponential (like the piano keyboard) nor linear (like harmonics) but is something in between. The 
greatest slope is below 500 Hz and represents the greatest resolution. 'Most of the lower .partials 
of musical sound can be independently discriminated. Generally, it is thought that "dissonance" 

. occurs when more than one partial falls within a single critical bandwidth. This plot is suggested as 
a possible guide for pla'cement of bandpass filter frequencies for a dense covering of the 
frequency spectrum. 
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The progr ;'nl lIses a 4th order Chebychev filter with a 3dB passband ripple. If it were being 

done (lg(lin. we feel th(lt less ripple is in order. The ripple caused certain harmonic amplitu des 

to be estirnatecl incorrectly. Figure 48 shows the impulse response and the frequency response 

for this kind of filter when centered around 100 Hz. 

The impulse response associated with a 20 Hz bandwidth is quite long, as can be seen from the 

figure. With some of the higher harmonics, where the activity is quite weak, considerable 

transient response was excited. The use of wider bands, as suggested by the physical model and 

the exponential models mentioned above, would help alleviate this problem. 

ON PROCESSING FILTER OUTPUT 

Theolltpllt of each filter is sent to an optimum-comb pitch detector. The detector searches for 

frequencieS-within the passband of the filter. It is applied every 2.5 milliseconds throu g hout 

the mClcro-region. The output of the pitch detector at each application is a list of the 

frequencies where minima in the comb output were found. Again, polynomial interpolation is 

used to locate the minima more accurately. This is essential. At 5 Khz, for instance, at 50 KHz 

sampling rate. the period is only 10 samples long. A shift of one-half sample is eqUivalent to a 

frequency change of about 250 Hz. Interpolation, then, is essential for the higher harmonics. 

Each such freg uency is compared with the previous application. Frequencies whose periods are 

within 2 samples are considered for linking. Each frequency is linked to its best match from the 

previous application . These links produce lists of minima. 

A fter a II the lists have been formed in this macro-region, 'a "weakest boundary first" merging' 

algorithm [Yakimovsky 1973] is used to link adjacent lists whose average periods are very close. 

This merging algorithm is lIsed because each time two lists are merged, the resulting list has in 

g'eneral Cl different average period, so that it must be compared again with its neighbors. Each 

time two lists are merged, the boundary between them is deleted and the "scores" (magnitude 

difference between the average periods of the lists) of the two remaining boundaries are 

recomputed bClsed on the new composite average period for the list. We cannot just merge lists 

which have scores better than some threshold without recomputing the averages. This could 

allow glissandi, which would have small local changes in frequency but large global changes. 

This procedure is seilsible because we know that the frequenCies present in the music change 

slowly and smoothly, so we can be sure that minima whose frequenCies are very close are quite 

likely- to belong to the same harmonic. Since we know that the frequencies of notes, and thus 

their harmonics, are nearly piecewise-constant, we can eliminate g'lissandi, and certain noise 

traces which appear to have swiftly-changing frequencies. 

With the lists that remain, some simple tests to eliminate noise traces are done. A list whose 

totClI deviation (maximum frequency in the list minus the minimum frequency) is too large is 

eliminated. Lists whose frequenCies change too rapidly (has too great a slope) are eliminated . 
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FIGURE 48. Impulse and frequency responses of the bandpass filters that were used for 
the harmonic extraction. The bandwidth is about 20 Hz. This filter is centered on 100 Hz. The 
filter was made by first designing a 2nd order Chebychev low-pass filter with 3 dB of ripple, 
transforming it to a 4th order bandpass filter (all in the continuous domain), then transforming to 
the discrete domain via the bilinear transform. Of course, the 3 dB points had to be mapped first 
to assure the correct cutoffs after transformation. The advantage of designing the filter in this 
manner is that it is a closed form solution '(no iteration) and thus can be programmed very 
efficientl y . It takes only a few milliseconds on the computer to set up the coefficients for a filter 
of arbitr ary ripple and cutoff frequencies. If we were to attempt the task again, a filter with less 
passband ripple would be preferred. The passband attenuation sometimes reduced the amplitude 
of a good harmonic to the point that it could not be distinguished from a noise trace. 
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As wa s mentioned before, the optimum-comb pitch detector (and, in fact, all autocorrelation­

type flitch detectors) responds as well to subharmonics of a frequency as to the frequency itself. 

We mList ha VP. a way to eliminate these subharmonics. This is done by applying a crude pitch 

detector which does not have this problem and comparing the results. The pitch detector used 

is Just the length of the list in time divided by half the number of zero crossings in that 

interval. This gives an order-of-magnitude pitch estimate which is then used to eliminate lists 

corresponding to subharmonics. 
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INTERMEDIATE-LEVEL 
TECHNIQUES 
INTRODUCTION 

PROBLEM STATEMENT 

A t this point of the analysis, we are presented with a list of sinusoids that are present in the 

original sound. We have their amplitudes and' frequencies as functions of time. The purpose of 

the intermediate-level programs is to infer from these data what notes are present, their 

frequencies and their extent in time. 

A t this level, we must also eliminate information that is not strictly erroneous, but nonetheless is 

not desired . One example of this is found in string instruments, When a musician plays a string 

instrument, like violin or guitar, the strings other than the ones being manipulated also sound. 
It would be extremely difficult for a inllsician to damp the other strings all the time. It is not 

common practice to do so on string'ed instruments except in some schools of classical guitar, 

The resonances of the other strings are usually 15 dB or more softer than the principal sounds, 

so they are generally not heard unless one listens very carefully. Our prog'ram, however, picks 

these extraneous tones out quite nicely. They appear in all the output. Rather than report 

exactly what is present, we wish to mimic human behavior and suppress these tones that do not 

have immediate musical meaning. Other extraneous sounds include box resonances (stringed 

instruments, for instance, have very strong box resonances), and strings that continue to vibrate 
past the intended en,ding of the note (common with open string·s). 

In the following sections, we describe the processes as they roughly correspond to separate 

programs in the processing path. First is segmentation and scoring. The scoring is the key to 

this entire section. Without rating the output of the low-level processes as to quality and 

suitability, no cogent decis}ons as to what notes are present could be made. With these ratings, 

the notes can be inferred by accumulating groups of high-quality harmonics without 

combinatoric searches, After the notes are derived, we proceed to separating the notes into the 

upper and lower voices. This is done using the assumption that the piece has no more than two 

voices · at any given time. Finally, the output is prepared for the manuscripting program. This 
involves some cleverness to assure good readability. 
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HARlVTONIC PROCESSING 

SEGMENT A TION AND SCORING 

INTRODUCTION 

From bandpass filtering and pitch detection, we get rough traces of the amplitude and 

freq uency contours for each harmonic present in the piece. The problems are many. First, any 

given trace may not include the full duration of a note. This is because of space limitations in 

the filtering prograrn. The signal must be broken up at arbitrary places and processed in pieces. 

These pieces must be glued back together later. Second, any given trace may include more than 

one note, one after another. This is because the transient response of the filter may continue to 

l'ing after a harmonic disappears. It can be excited by activity elsewhere in the spectrum. This 

c<'ln continue indefinitely, or another harmonic of similar frequency may be picked up. Third, 

poor traces are caused not only by weak signals, such as extraneous resonances or high 

h<'lnnonics , but can also be caused by having the center frequency of the filter be offset from 

th e actual fr equency of the harmonic. In fact, there are usually 3 traces for each harmonic: one 

ri g ht all the frequency, one above, and one below. 

Frorn this. we can see that the first thing that must be done is to break up the traces into units 

that we know contain no more than one harmonic of one note, if they contain anything 

meaningful elt ::I II. The next thing that must be done is to produce a score for the trace which 

reflects its "q\.lality" in some way. We must decide what "quality" means in this context. Gluing 

tog'ether component pieces of a long note can be done later. 
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SEGMENTATION AND SCORING 

The segmentation is actually the easiest part of the processing. Here, we simply determine the 

threshold on the amplitude function such that 90 percent of the energy in the harmonic is at 

amplitudes above this threshold. The amplitude function is then scanned for regions that 

exceed this threshold. Segments that are shorter than 35 milliseconds are assumed to be 

unimportant and are discarded. This is based on the fact that most meaningful musical notes 

are longer than 100 milliseconds. Occasional grace notes and trills will involve notes as short as 

50 milliseconds. Our programs are set up (from this point on) to favor notes of duration 80 

milliseconds or longer. This number is a compromise with the desire to include meaningful 

musical notes and the desire to eliminate noise traces. We must set the threshold on length long 

enough to eliminate as much spurious transient response of the bandpass filters as possible. We 

include harmonics at this point of durations 35 to 80 milliseconds because they may get merged 

into a longer note subsequently. 

Before we proceed further, let me point out an ambiguity of terminology. When a piece of 
music is written down in traditional music notation, the resulting document is called a score. 
A lternately, when we rate an entity by assigning it a number which reflects its quality, this 

~umber is oft~n called a score. We hope the context will distinguish these meanings clearly. In 

this section, we are interested in assigning a 'quality measure to the traces, so it is the second 

meaning that is relevant here. 

The scoring of a harmonic is the most important process because it is the only clue as to the 

viability of a note that is assembled from a group of harmonics. As an example of how much 

data is assembled, a single 2-bar piece that was processed contained 27 notes, or about 150 

meaningful harmonics (about 5 harmonics per note). The output of the bandpass filtering and 

pitch detection produced about 2000 amplitude-frequency traces. That means that over 90 

percent of the traces produced by the filtering and pitch detection must be discarded. · The 

traces come from multiple detections of single harmonics, and traces of transient responses and 

noise p~tterns in the high-frequency ranges. The score must reflect the likelihood that a given 

harmonic is real and not just a noise trace. 

The criterion we have chosen is smoothness of the curves. We require the amplitude curve to 

correspond well to a low-order polynomial (6th order or so), and we require the frequency to be 

nearly constant. Since the sluggishness of the bandpass filter smooths out any fine detail in the 

harmonic, this is a reasonable consideration. Strong', valid harmonics tend to have clean, 

smooth traces and nice even frequencies. Vibrato can cause the frequency to be nOll-constant. 

Rather thari deal with this aspect now, we have finessed the problem by not considering it. Any 

more comprehensive musical scribe should allow certain forms of frequency variation like 

vibrato, glissando, and expressive frequency changes. 

We produce a composite score for the trace by taking into account the residual error of the 
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amplitude <lnd frequency fits as well <IS the coefficients of the frequency fit. This 110t 0111y t~ I V t' S 

a measure of th e quality of the fit, but a Iso a measure of the constancy of the freq uency d 1I111l i; 

the note. We <lIsa use the distance between the center frequency of the filter and the frequen cy 

of the harmonic. Since the traces are better as they approach the center frequency, because they 

are maxirnally distant from the high-Q resonances of the filter, this is a reasonable measure to 

help discriminate good traces from transient response. Each of these measures must be made 

commensurate with one another. For instance, the coefficient of the second degree term of the 

frequency polynomial is a squared quantity and its square root must be taken. 

One of the bigger problems in normalization of the components of the score is equalization for 

duration . We want scores for long notes to be commensurate with scores for 'short notes, The 

terrns in question here are the residual errors for the polynomial fits , If we view the fit as a 

regreSSion process, then the residual error will be distributed as X2, To show this and the 

assumptions it involves, let us show where this result comes from. This presentation is patterned 

after Freund [1962]. Since this is a standard derivation, we shalt only present the results, not 

the intervening steps. 

Given a sequence of abscissa, Xj, and their ordinates, Yj, representing, in this case, eq u ally 

spaced points in time and the value of the amplitude or frequency curve at that point in time, 

we can fit a polynomial to Y as a function of X and use its residual error as a measure of the 

quality of the fit . We assume, then, that the Yj are independent random variables haVing· the 

following- conditional probability distribution: 

Where X j are the independent variable, 1 ~ i ~M 

Yj are the dependent variab le, but are indejJendent random variables 

distributed normally about an Nih-order po lynomial. 

(j is the standard deviation of said distr ibution. 

a j are the coefficients of said polynomial. 

Here, the 3 j are the same for each value of i, We obtain maximum likelihood estimates of the 

regreSSion coefficients, aj' and then compute the residual error as follows: 

M N 
1 2 
M 2:; (Yi-~ ajXp 

I =l j=9 

Where p is the root-me an-square residual error of the abscissa and the 
polynomial 
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p2 will then be an estimator of 0- 2 and is thus distributed as X2. The main assumption here is 

that the ordinates are distributed normally around a polynomial. This is, of course, not entirely 

true. There is nothing in the physics of music production that requires the harmonic 

amplitudes to be polynomials. We violate the assumption with the hope that the resulting 
computations will still be meaningful. 

The use of the X2 property of the residual error is that traces of different lengths (different 

values of M, i.e., different numbers of degrees of freedom) can be compared by first normalizing 

by the. X2 value for that number of degrees of freedom. In fact, we find that this does help 

produce more commensurate residual errors between long segments and short segments, but due 

. to the fact that the assumptions fundamental in the process are Violated, the correction does not 

seem to be enough. Long segments still have somewhat higher residual errors than short ones. 

To be explicit, the score, representing the "badness" of the trace (that is, inverse quality) is 

computed as the sum of the following terms: 

(f I - The quotient of the residual error of the amplitude fit, as defined in equation (38), and 

the average amplitude of the harmonic. The residual error of the amplitude fit was 

normalized by the X2 value for the number of degrees of freedom (points) in the 

amplitude function that were used in making the polynomial fit. 

(f 2 - The quotient of the residual error of the frequency fit and the average frequency of the 

harmonic. The residual error is again normalized by the X2 value. 

(f3 - The first-order coefficient of the frequency fit, divided by the average frequency of the 

harmonic. 

Cf 4 ~ The square root of the second-order coefficient of the frequency fit, again divided by the 

average freg uency of the harmonic. 

Cf 5 - The magnitude of the difference of the average frequency and the center frequency of the 

filter. 

The total score was then computed as the weighted sum of these terms: 

(391 (f 

Where the k j are the weightings of the vario,us error terms 
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The first fOllr terms, (f 1 through (f il , were normalized by the average value (amplitude or 

frequency) of the harmonic. This gives a measure of the relative error rather than the absolute 

e rror. This allows us to compare strong harmonics with weak, high frequency harmonics with 

low freq uency ones. Otherwise, the expected error range would vary with these parameters. 

In (rij. the square root was taken because the second-order coefficient is a squared quantity . The 

root must be taken to make it commensurate with the other . error measures, which are all linear 
quantiti es. 

For reference. the values for the weights, ki' were k t=100. k2=3000. k3=10. k 4=20. 

k5=4 

Figure "19 shows four examples of segmentation, polynomial fitting, and scoring on a single 

harmonic. The harmonic chosen is the second harmonic of a 262 Hz note (C4), which is at 

about 525 Hz. These traces are taken from the first notes of a two-part piano piece. There is 

also a ??2 Hz note (E4) sounding at this time. The four traces in the fig'ure are separate traces 

of th e same harmonic. This shows how adjacent filters will pass the same harmonic with 

differing degrees of faithfulness . Over each figure is a list of parameters: CF represents the 

center frequ ency of the filter that produced the trace. In each figure, the upper plot represents 

the amplitude envelope of the filter output. The bottom plot represents the output of the pitch 

detector which was applied to the filter output. Across the amplitude plot is a horizontal line 

which represents the threshold such that 95 percent of the energy in the amplitude envelope is 

a t values above that threshold . This is how the segmentation is done. The small arrows point 

out the limits of the region above threshold that is being processed. Sometimes a single. trace 

will h ave several disjoint traces above the threshold. The next figure shows such an example. 

Both the amplitude and frequency functions were fit with polynomials. The polynomials are 

also plotted . Th ey are the smooth lines through the plots. The amplitude polynomial is of order 

6, and the frequency polynomial is of order 2. 

A bove each fi gure is listed the contributions to the total score from each of the five error 

fun ctions. The labei CONTl on the figure refers to the weighted, normalized quantity k I(f I. 

The label CONT2 refers to the weighted, normalized quantity k 2(f2' and so on. The total score, 

which is the sum of these contributions as expressed in equation (39), is labeled SCORE in the 

figures. The para meter AVFR is the average frequency in the region under analysis. 

A s we C;:lll see. t he error score decreases monotonically as the center frequency of the filter 

ap proaches the actual frequency of the harmonic, even if we discard the contribution from 

k5U\. which represents exactly the distance from the frequency of the harmonic. The 

contribution from k 5(f5 is included to strengthen this bias toward centered filters. Remember 

.that the frequencies of the filters was determined by the comb filter, so that they do not 

necessarily represent the frequency of the harmonic that passes through the filter. We include 

this last term to represent only the fact that the trace is better when the frequency of the 

harmonic is near the center frequency of the filter, and thus the overall score for the harmonic 

is more likely to be meaningful. 



[f - 1 
I: liN II 
I:IINI? 
[IINI] 
CIINI1 
[ON I!; 

J .:-JS 11 
16.7562B 
37.25071 
1.870699 
1.655251 
59 . 07617 

AVfll = 506.120Z 
SCORE = 119 . 5 

a. 

101 

Cf = 5 
CONTI 
CONTZ 
CONT3 
CONTi 
CONT5 

3.167 
3.381919 
11 . 85156 
5.661257 
3.579995 
H.Z1539 

AVfR = 5Z3.1799 
SCORE = 65.61 

b. 

~ ~ 

rjl----' ,--f-2:~:C?:=:-' ----1-\, 
9 . 1 9 . 2 

TIME IN SECONOS TIME IN SECONDS 

~:~e ~' 1>53~' 
~~e . _ :: 
• ' , 52 

,1 ~J ' , 

O.~[ - 91 0.75[-01 0.1 0.125 9.1 0 . 2 

[f = 527 . 5137 
CONTI 1.135118 
CONI? 5.295363 
CONI3 6.713116 
CONT1 3 . 717053 
CONTS 9.373505 

AVfR = 525.1703 
SCORE = 26.26 

c. 

. ~ ~ 

"z~, 0 . 1 ' 0.2 
lIME IN 5ECON05 

I" --c:==~~~ 51~ 
!;2~~n 1:-: 

0.1 0 . 2 
TIME IN SECONDS 

TI ME I N SECONDS 

Cf = 560.102 AVfR = 511.3933 
CONTI 0.9131931 SCORE = 111.3559 
CONT2 Z . 371768 
CONT3 31.13195 
CONTi 13 . 15112 
CONT5 63.15157 d. 

FIGURE 49: Plots from the segmentation and scoring algorithm. Each p'icture shows an amplitude 
and a frequency curve. The horizontal line across the amplitude plot denotes the threshold where 

, 95% of the energy of the plot lies at amplitudes above this line. The small arrows denote the 
region being fit and scored. The smooth curves through the amplitude and frequency plots are the 
polynomial fits to these curves. In figure 49c, the polynomial fit for the frequency rises at the end 
of the plot. This is a boundary effect common in this kind of approximation that the slope of the 
approximation strays at the ends of the window. The numbers at the top represent the various 
scoring contributions, already weighted and normalized, as described in the text. CF represents 
the center frequency of the filter that produced these plots, AVFR represents' the average 
frequency in the region being fit, and SCORE represents the sum of the contributions from all five 
error sources. These traces were taken from the analysis of a two-part piano piece. There was a 
262 Hz note and a 332 Hz note being played at this time. We see four traces of the same 
harmonic: the second harmonic of the 262 Hz note, at about 525 Hz. It is clear that the score 
improves (gets smaller) as the center frequency of the filte r (CF) approaches the actual frequency 
of the harmonic. This is a good demonstration of why a scoring system is necessary. Each 
harmonic produces many traces. The good ones must be separated from the spurious ones. The 
error criteria used here seems to accomplish this effectively. 
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In figul'e 50 we sec four more plots, again of the same harmonic, which is the third harmonic 

of the ?32 Hz note (E4) at about 987 Hz. Since the strengths of the harmonics generally 

decreClse as rhe hutnonic number increases, these upper harmonics become increasingly dif~icult 

to follow. Often, even when the filter is exactly centered on the harmonic a good trace with low 

errol' (8nnOr be obtained. As a result, these upper harmonics cannot be llsed with great 

confidence to in fer the existence of notes. 

figure bO;~ aile! 50b show how a single harmonic can get spuriously broken into two pieces. 

Here th!:' Ii :umonic was beating with the transient response of the filter and went below the 

segmentation threshold and was thus broken up . 
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FIGURE 50 : Plots from the segmentation and scoring algorithm. As with the previous figure, these 
traces were taken from the analysis of a two-part piano piece. There. was a 262 Hz note and a 
332 Hz note being played at this time. We see four traces of the same harmonic: the third 
harmonic of the 332 Hz note, at about 987 Hz. As we ascend in harmonic number, the traces get 
weak and noisy, such that there are many spurious traces, and high error scores on the good 
traces. For this reason, we cannot rely on the higher harmonics as evidence for notes except for 
certain instruments with especially strong high harmonics. 
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INFER I{ INC; THE NOTES 

A t thi s point in the analysis, we have a large set of possible harmonics. For each possible 

harmoni c. we preserve only a few numbers: the average amplitude, the beginning time, the 

ending time. the average frequency, the error score, and the amplitude function polynomial. All 
information regarding the exact shape of the amplitude or frequency function has been 

discarded. 

It seems to be a property of machine perception prog'rams that they get more and more heuristic 

and less ,mel less defensible on theoretical bases as they proceed to higher and higher levels of . 

processing. away from the low:level, signal-processing techniques. This program is no 

exception . Each heuristic is based in the properties of musical sound, but sometimes the 

con q ect ion is f.' specially ten uous. 

Our first task is to merge duplicate traces. Since we get several traces for each harmonic, we can 

combine these into one composite harmonic. This reduces the data immediately by a factor of 

three or so. This initial merging is only done for traces that overlap significantly in time and 

whose pitches <lre within a few percent of one another. We call these reduced harmonics. The 

parameters of the reduced harmonic are taken from the parameters of the harmonic with the 

lowest error score. In the case of several harmonics with low scores, a weighted average is taken 

to form the new amplitude and frequency. The parameters are weighted by the reCiprocals of 

the scores of the individual harmonics. 

Next, <l list is formed of these reduced harmonics in order of their average amplitude divided 

by their error score. This provides s.imultaneously a measure of the strength and the quality of 

the reduced h<llmOnic. We then attempt to group together a number of harmonics that infer a 

note . . One problem in so doing is avoiding a combinatoric search . Assuming that the lower­

level procedures have produced faithful traces, we can just pick off the best reduced harmonic 

(il1 the sense of having the largest amplitude-error score quotient) and assume that this is the 

first. second or third harmonic of a note. This is a purely heuristic assumption but it is based 

on the observation that most musically interesting tones have strong lower harmonics. This does 

not account for many effects present in human hearing, like the existence of residue pitch, but 

it is a reasonable compromise for the current study. 

With this reduced harmonic, we first search the entire reduced harmonic list to see if there is 

another reduced harmonic existing' at the same time that has one-half or one-third of the 

frequency. If there is no such tone, we take our original reduced harmonic to be the 

fundament<ll of the note, else we take the lowest reduced harmonic found as the fundamental. 

We can then race through and. pick out harmonics for this fundamental just by locating 

reduced harmonics that exist at the same time and which have frequenCies that are close to the 

predicted frequency of the harmonic in question. 

Once the harmonics are selected, the note can be tested for Viability. The first test is whether 
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the fundamental is at all strong. We require the fundamental to be of substantial st1't."ll p h ~lf1 d 

quality . This is, again, a departure from human perceptual performance. If the fundamental IS 

strong, we examine the strengths of the harmonics that are not multiples of two and nO( 

multiples of three. The 1st, 3rd, 5th, and 7th are examples of harmonics that are not multiples 

of two .. The 1st, 2nd, 4th, 5th, 7th, and 8th harmonics are examples of harmonics that are not 

multiples of three. This is to try to determine whether the fundamental is a spurious trace and 

the nO.te is really two or three times higher than we are hypothesizing. We threshQld the ratio 

of the sums of the qualities for these selected harmonics with the sum of the quality for the 

remaining harmonics. This seems to be an adequate technique, although it occasionally 

eliminates useful notes. 

We require also that the harmonics be dense. That is, for two or more harmonics, we require 

that the note possess all but one harmonic for acceptance, unless it is only odd harmonics, in 

which case it must possess all the odd harmonics up to the highest harmonic in the 

hypothesized note. A note consisting of just one harmonic, the fundamental, we require to be 

quite strong for acceptance. 

We then merge notes that have very nearly the same frequency and overlap considerably in 

time. These can be produced by having a very long note. The initial segmentation based upon 

the musical harmony of the piece is made, some errors in segmentation result. The most 

common form of this kind of error is that a long note can get broken into smaller pieces. These 

pieces must be glued back together at some point. We have chosen to do so after the note 
, hypothesis has been formed . 

The data representing the note is then reduced to just four numbers: the pitch, the beg'inning 

time, the ending time, and the quality (amplitude over error score). The beg'inning and ending 
times are obtained by producing an overall amplitude profile for the note based on the 

polynomial representations of the amplitude curves for each of the harmonics. This overall 

profile is subjected to a threshold that assures that 95 percent of the energy is above the 

threshold. The times where the profile drops below this threshold are taken to be the beginning 

and ending times of the note. . 

Figure 51 shows a representation of one of the notes inferred by this procedure, The curves on 

the plot represent the amplitude polynomials for each of the harmonics. The text in the lower 

part of the picture represents information on each of the harmonics. The first column is the 

beginni ng' time, the second column is the ending time of the harmonic. These times are in tens 
of milliseconds, The next column is the average amplitude of the harmonic. The fourth column 

is the error score of the harmonic. Sometimes there is not a space between the figures in the 

third and fourth columns. The last column represents the average frequency of the harmonic. 

Th e isolated pitch figure at the bottom of the plot represents the weighted average pitch of the 
tone, which is derived by dividing down the average pitches of the harmonics, weighting' .them 
with the quality of the reduced harmonie, and averaging them. 
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cur ves in the upper figure are the polynomial approximations to the harmonic amplitude curves. 
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ener·gy lies. 

w 9.25[ - 91 

2 

e. 
TIME 

Sf' f.P OM!' 5CR Plr 
!; 27 771018 331 
1 33 ~lU~ 18 r,~ 

1 10 117 <'9 990 
1 16 176 71 1329 
31 1, 1163166 336 

35 15 17 00 983 

Trimmcn noles PilCH IS 339.6625 

FIGURE 52. This plot is like the above one, but points out that even at this late stage of 
the processing, noise traces can still be present in the data. Here, a bit of transient response from 
the following note overlapped this note enough to be absorbed as part of it. The noisy harmonic 
has a higher error score than the others, but it also has a very high amplitude, so it is not clear on 
what basis it can be eliminated. 
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Even at this late stage, imprecisions occur. Figure 52 shows one such error. There is a strong 

noise burst on the end of one of the harmonics. This burst is enough to cause the ending time 

of the note to be overestimated. 
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DERIVINC THE MELODIES 

Gi veil litis li sl of notes from the previous processing stage, we must now link them into 

meJoc1 ies For con ven ience, we do not attempt to hand Ie the case w here parts cross. To handle 

crossin g pan~ correctly, we would have to Identify the instrument involved, as well as examine 

the musical context in great detail. 

We ha vc decided upon a very simple algorithm for selecting melodic groupings. At this point 

in the algorithm, we make use of the assumption that there are no more than two independent 

voices in the piece. This way we can search for places where there are two notes sounding 

simultaneously and identify the voices positively. Any place that can be so identified is called 

an island. This island represents a place where there is no doubt as to the voices (upper or 

lower) a particular pair of notes belong to. 

To finish the assignment, we liSe a global scoring' algorithm. We assig'n a "score" to a particular 

assignment which is the sum of the magnitudes of the differences of the frequencies of adjacent 

notes in the melodies. We can then search all possible assignments of the unassigned notes and 

compare the variolls possibilities by comparing their scores. The assignment with the bes t 

(Iowt' st) score is chosen. 

Fig-me [1 3 ~h()ws th e initial melo~ic aSSignment for a guitar duet. The score for the duet is 

shown in fi gure GO. What we see in this figure are the aSSignments based on the existence of 

islan,ds in the piece. Each note is represented by a horizontal line. When a note is assigned to a 

voice, a "tail" is drawn at the end of the line which points up, denoting membership in the 

upp e r voice, or down, denoting' membership in the lower voice. The dotted lines represent 

melodic connections made between notes which indicate melodic adjacency. In this figure , there 

are S un assi g necl notes . 

With a small number of notes and a branching factor of two, it is reasonable to do an 

exhaustive search to determine the best melodic aSSignment. For this to be practical, the 

algorithm which determines the melodies once the notes are assigned to the voices must be fast. 

Fortunately. this can be done in a very simple manner. With the voices already assigned, we 

merely start at the beginning of the piece. We locate the first notes in the piece in each voice. 

We th en locate the second notes in each voice simply by searching forward in time. We proceed 

through time in this manner, annexing notes onto their respective voices, until we exhaust the 

notes in the piece. This aSSignment is linear and can be made very fast by sorting the notes into 

time order. This sort only has to be done once. 

figure 5'1 shows the results of the melodic grouping for the guitar duet. Figures 55 and 56 show 

the sarne plots for the pseudo-violin duet whose score is shown in figure 58. 
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Figure 53. This shows the first stage of the melodic grouping. This is from a guitar duet. 
The score for this piece is shown in figure 60. Each note is specified by a horizontal line. Some 
notes have already been assigned to the upper or lower voice. There is a "tail" on each assigned 
note that points up or down, denoting membership in the upper or lower voice, respectively. 
Those notes that are assigned to voices in this plot were so assigned by finding pairs of notes that 
were sounding simultaneously. In such a case, the upper note will be assigned to the upper voice, 
and the lower note to the lower voice. The dotted lines indicate a melodic connection between 
adjacent notes of a melody. 
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Figure 54. This shows the final melodic grouping. This is from a guitar duet. The score 
for thi s piece is shown in figure 60. As in the previous figure , each note is specified by a 
hor izontal line. Some notes have already been assigned to the upper or lower voice. There is a 
" t ail" on each assigned note that points up or down, denoting membership in the upper or low er 
voice, respectively. The remaining melodic membership was assigned by determining the voice 
ass ignment which minimized the sum of the magnitudes of the differences in frequency bet ween 
each pair of ad j acent notes in any proposed melodic assignment. Since the number of notes is 
small, this was done by a factoria l search. 
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Figure 55. This shows the first stage of the melodic grouping for the pseudo-violin duet. 
The score for this piece is shown in figure 58. The format of this figure is like that of the 
previous two figures. 
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Figure 56. This shows the final melodic grouping for the pseudo-violin duet. The score for 
this pi ece is shown in figure 58. 
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ON MANUSCRIPTING 

Once the melodies are determined, the manuscripting is just a matter of preparing input for 

Leland Smith's manuscripting program [1973]. Smith's program relieves us of having to 

consider the exact geometric and spacing details, but it does not guarantee that what is printed 

makes good musical sense. For instance, it is a convention that once an accidental occurs in a 

measure, the effect of the accidental persists throughout the measure. This means that we must 

keep track of each accidental and reset the flag at the end of the measure. 

It is also a convention that a note of a certain duration shall only be written on an integ-r31 

number of those durations into the measure. For instance, a syncopated note of three eighth­

notes duration which begins after an eight rest at the beginning of a measure is usually not 

written as a dotted quarter. It is usually written as an eighth tied to a quarter. Thus we must 

build up each duration from an assemblage of notes connected by ties. 

Still, compared with the difficulties involved in the low level tasks, this aspect of the problem is 

simple. 

There is, of course, indeterminacy in a musical score. We can scale all the note representations 

by any number of factors of two and still make musical sense. A piece written in 4/4 can be 

written eqUivalently in 2/2 with little difficulty. We rely on the human to resolve the ambiguity 
in this case.' 

A Ithoug'h some work has been done on inferring the key and time Signature of pieces [Longuet­

Higgens and Steedman, 1971], we did not attempt to do so here. The reasons are that it would 

appear that any algorithm to do this must be dependent on the style, and that some of the 

pieces we were interested in were atonal pieces and thus had no key Signature. It would be an 

interesting exercise to see if the key and time Signatures could be inferred in general in some 

meaningful way. 

A Iso not discussed here is the problem of tracking rallentando, accelerando, or other slow 

ch~ltlges in tempo. This provides a special problem for the musical scribe. Detecting the beat, 

especially if any syncopation is involved, seems to be quite difficult. It is hard to define a 

strategy that will do this in any general fashion. 

There is also the problem that the times and durations that the computer determines will be, in 

general, real numbers, whereas these must be converted to simple rational lengths for the score. 

We do this by asking the user what the smallest length note is that he will accept. A II note 

positions and durations are forced into multiples of this length. This means that the user can 

ask for a quite grotesque score by giving a very short duration as the fundamental length . 

This is not really a satisfactory arrangement, because we are generally less concerned with When 

very long notes end than when shorter notes end. Thus, to specify the duration of a note that is 
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slightly longer than a whole note down to the nearest 641h note may not be exactly what is 

called for. Yet, if the composer wishes to specify a tone that continuously melts into a rapid , 

syncopated segment, that is exactly how he would write it. In other words there seems to be 

many options as to how to notate such cases, depending on the exact style of music involved 

and the ideas the composer is trying to embed in his piece. We have taken a somewhat neutral 

attitude here by attempting to do only an adequate job, rather than a superlative one in 

choosing among the printing alternatives here. 
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TH £ DFT AGA IN 

A tr ial system using the discrete Fourier transform (DFT) was made before we reali zed th ~t 

such a system was not capable of dealing with reverberation or vibrato. Although we do not 

attempt to deal with vibrato here, the ability can be worked into the current framework without 

too much difficulty. This is not true for the DFT. In any case, let us present the results of low­

level analysis using the DFT. 

The DFT-based system made one complete pass through the sound waveform and applied a 

4096-point DFT e'very 10 milliseconds. At a sampling rate of 25600, the DFT window was 160 

milliseconds wide. Since a second-order weighting function was used, the effective width of the 

window was less than half of this. This is similar to the averaging period of the bandpass 

f ilters that were previously discussed. The magnitude of the DFT was computed. Peaks were 

detected in the spectrum and were interpolated to get the frequencies and amplitudes more 
accurately . The method of Rife and Vincent [(970] were used for the weighting and 

interpolation. In their terminology, method II was used with a class-III weighting function of 

second order. 

The first measures of two pieces were done. The guitar duet, whose score is shown in figure 60, 

and the pseudo-violin duet, whose score is shown in figure 58. Figures 57a and 57b correspond 
to the guitar duet, figures 57c and 57d to the pseudo-violin duet. 

In each piece, the left-hand figure has a point for every peak in the DFT that was found . The 

vertical axes are labeled in Hertz and represent the frequencies of the spectral peaks. In the 

right-hand figures, the points .in adjacent time slots have been linked together into lists. The 

head of each list is marked on the plot by a small vertical stroke. Isolated vertical strokes are 

lists of one element. We can see in the pseudo-violin duet that some harmonics which actually 

belong to different notes have been merged because of their proximity in frequency . We can 

see this in the lower plots (57c and 57d) in the fundamental frequency of the first two notes in 

the lower voice. These two notes actually occupy the first and second 200-mUlisecond windows 

of the piece. In 57d, we see that the two harmonics have been linked together, because the peak 

in the DFT representing these harmonics moved smoothly from one frequency to the next at 

about 200 milliseconds into the piece. This can be dealt with later by noticing that the 

frequency has a quantum jump over the duration of the harmonic. 

This method might be viable for non-reverberant, non-vibrato cases, although for the guitar 
piece, some method would have to be developed to recover the missing harmonics, such as the 

second harmonic of the A3 (220 Hz) at about 1400 milliseconds (figure 57b). The second and 

third harmonics of the note only appear briefly in the DFT. 



1 "It I 

rJu: " GUI I I . OAlIOAT.JnM l. P0 5 ; 0 

.............. 

........... . ..... .......... ' 

.. : ..... .... ::::: ........ . .. 

............ ,., : .... , .. ~. -: .. 

......... 
.... :- .... , 
.: ............ ... ... ....... .. . 

-....... .. ···.M ........ ...... .......... ·· ... ......... • .. · •. 

.... ........ 

. ... ................. : ... . :::..................... '" 

.. ... .............. .... :. 

116 

. ;::;:::: ............ .... :!.: ....... .. :I.·· .::::::: .... :: 
:-: ......... . ........ :: ... . 

' " . " ............ .... '" ............... .. ...... ..... ............ . 

a. TIME IN MILLISECONDS 

f I LE · GAONI.OATJOAT , J AMJ. PO S 

..... .. ..... 
..... 

.. ... ....... , ... ....... ... 
.. .. , 

...... .... .... ..... 
............ ... . 

....... . .... ... .. 

:.::: : .. .... .... . .:::::: ::::::::::: ... ... .. . .. ....... ::::::::::;=::::::::: .... ........ ... ... . 

C. TIME IN MILLISECONDS 

2 0 

15 

10 

2 0 

IS 

10 

f IL E GUIfI . LNK JOA T.J AI1J. 

~ 
'---, 

'--

....--
"-----" 

, ., 

~ , 

oc--
I 

'('--

" , 

b. TIME IN MILLISECONDS 

pas a 

'-

----

, 
'--­, 

fIL E; GA ON l . LNK IOAT.J AI1 I. POS 
,... 

, , 
0-

, -
5 e 

.-, , 

" 
" 

... 

~ 

,.... 

, 
I , 

..---

,---
I 

..----

I 600' 

d. TIME IN MILLISECONDS 

..-
,!.-

..-- .--.-- 0--

,r-
r "'-
,- -

,-- ...---
~ 
~ , 

,--~ , 

Il.no ' 

FIGURE 57. These are the results of an experimental system using only the discrete Fouri er 
tran ~; fol'm as the low-level routine. Every 10 milliseconds, a new DFT was computed. In th e left 
fi gures (a and c), each point represents a peak in the OFT. All horizontal axes are in milliseconds , 
th e vertical axes are in Hertz. The right figures (b and d) have been processed to link peaks in 
adjacent time windows. A vertical stroke denotes the beginning of a list of consecuti ve peaks. The 
piece that produced the · top plots (a and b) is the guitar duet whose score is shown in figure 60. 
The pi ece that produced the bottom plots (c and d) is the pseudo-violin duet whose score is shown 
in figure 58. In each case, only the first measure of the piece is shown here. The transform was 
4096 points (160 milliseconds long) and a second-order time window was used. The method of Rife 
and Vincent [1970] was used to interpolate the peaks. We can see, especially on the guitar piece, 
that harmonics of notes known to exist are often missing. Although there is not an exactl y 
analogous illustration, we can compare this with the results of the programs using bandpass 
filtering in figure 53. . 
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YES, BUT DOES IT WORK? 
INTRODUCTION 

In this section we present the results of our work, a critical review of its faults, and some ways 

that a future system might better be constructed. 

One of the pieces shown was entirely synthetic, essentially untouched by the disturbing­

properties of transmission through the air. This was done for debugging purposes. The other 

piece was performed by the author and recorded at home on a cheap Sony tape recorder. Both 

pieces were composed by the author. They are both segments of larger pieces. They were chosen 

because they both exhibit properties that make them compatible with the restrictions we have 

imposed on the kind of music that will be accepted for analysis. 

In discussion possible improvements, we deal with each stage of the analysis separately. We 

outline a possible two-step filtering scheme that uses wide band filters to determine the strongest 

sinusoid in a given frequency region, then a narrow band filter to extract that sinusoid 

individually. 

A rating scheme for notes is suggested which is somewhat like that applied to individual 

amplitude and frequency traces. This would allow comparison of note hypotheses and a similar 
sort of maximizing search would be possible. 

Other improvements include changing the tempo to compensate with the performer's tempo 

changes, and many other fine points. 
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S01\1E EXAMPLES 

Here we present two examples to show the operation of the system as a whole. The first 

example is synthetic and was both synthesized and analyzed entirely within the computer. This 

W(lS th e piece the programs were debugged on. The utility of working' with a synthetic piece is 

that one knows exactly when each note begins and ends, exactly what the pitches of the notes 

are, a ne! exac tly what their amplitude and frequenc y functions are. It is a little unreal in that 

there is no cl igitizing noise, no room noise, no spurious sounds from box and string reson a nces, 

and no room rev€J'beration. The second piece, however, possesses all these problems. 

Even t hough the synthetic piece has no noise, it is still not a trivial example. It is non-trivial 

bec ;:!use the tones were generated from the analyses of actual violin tones by use of the 

hete rodyne filter which preserves all the highly time-variant properties of the tones. Anoth er 

reason why the piece is non-trivial is that it is quite fast. Quarter-notes occur at 160 per minute, 

making the length of each eighth-note only 200 milliseconds. Since the note is stp,ccato, its 

tffutive ll"'ngth is even shorter. These short notes spell death to most signal-processing 

tech 1'1 iq ues because there is little or no stead y-state portion of the signal. Transient responses are 

strongly excited . 

Figure 58 shows the original score of the synthetic piece. This piece was syntheSized for 

p seudo-v iolin, using the analysis data of an actual violin. It sounds a little strange because only 

the clllalysi s data of an Eb4 was used to synthesize all the notes. When you resynthesize a note 

off th e o ri g inal frequency, the timbre of the tone is altered, sometimes quite a bit, although the 

speo ral shilpe and the transient behavior is identical at either frequency. 

Figurc 5~1 is the final output of the transcription programs. As is easily seen, all the notes are 

pres€lIt. they begin at the correct times, and they are at the right pitches. The note lengths, 

howl'ver , ha ve been consistently underestimated . This is because the segmentation algorithm 

threshold was set quite high to eliminate noise traces and consequently eliminated some good 

d ;'lta . A ny more comprehensive system should go back and, knowing the pitch and rough 

durati on, analyze specifically for the time limits of each note. Knowing the pitch of the note 
. . . 

and al l the simultaneously sounding notes would enable us to perform this analysis. 

Figure 60 shows the original score of a guitar duet. This piece is somewhat slower than the 

previous one. The eighth-notes are of about 250 milliseconds duration, for an overall tempo of 

120 qual'ter .. notes per, minute. 

Figu re G 1 shows the final output of the transcription programs for this piece. A gain. the 

durations are consistently underestimated. There is one note missing toward the end of the 

pi ece. This was lost due to one harmonic being coincident with the other note sounding at that 

time. {I nc! a second harmonic being lost due to noise. The remaining harmonics were not strong 

enoug h to infer a note at that position. 
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FIGURE 58. The original score for a pseudo-violin duet. The tempo is rather fast. There 
are 160 quarter-notes per minute, or about 200 milliseconds for each eighth-note. Since this piece 
goes below G3, this score could not .have been played on actual violins. With computer 
synthesized violin-like tones, we have no such restrictions. 

FIGURE 59. This is the score produced by the computer. The lengths of the longer notes 
are consistantly underestimated. This is because the· threshold for noise rejection is set so high 
that the tail ends of the notes are lost. 
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FIGURE 60. The original score for a guitar duet. The tempo is 120 quarter - notes per 
minute, or about 250 milliseconds for each eighth-note. 

.' 
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FIGURE 61. This is the score produced by the computer. Again, the lengths of the longer 
notes are consistantly underestimated. Also, there is a note missing in the last measure. The most 
conspicuous change, however, is due to the fact that the guitar was mistuned somewhat high. The 
lilNal-minded computer faithfully reports the score here one half-step high throughout. The 
int erva ls between consecutive notes is correct in terms of the number ·of half-steps the interval 
repre ::.e nt s. Please note that this is not good musical notational style. This should be notated in 
the kev of Db, which would make all the accidentals dissapear. We retain this notation because it 
is simple, general, and can represent 12-tone pieces as well as tonal pieces, although the 
representati.on is quite clumsy in many cases. 
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This points up another deficiency of the program that infers the notes from the h:HIl1L1!lics: 

when a harmonic is used to infer a note and that note is accepted, that harmonic IS It'nhwed 

from the list of harmonics. This means any subsequent note that might :.Iso use that harmOlllC 

rnust do without it. The progTam was arranged in this manner to help eliminate the problem \~f 

hypothesizing a note based on each harmonic present. This way, we hypothesize the lowest one, 

and remove all the harmonics from further consideration . Clearly, some compromise could be 

arranged. 

One hopeful sign is that this guitar piece was recorded in a noisy environment, with poor 

eq uipment and no special care taken in type of tape used, type of tape recorder, type of 

microphone, microphone placement, or any of a number of considerations that define good 

recording technique. The only consideration was that the recorder was not saturated during the 

recording. 

In fact , the guitar was not tuned to A4=440 Hz. for the recording. The result of this is that all 

the pitches were about 2 percent higher than concert. The program rounded this upward and 

printed the score uniformly one half-step higher throughout. This shows the literal-minded 

nature of the computer. We did nothing to correct this mis.tuning. A more comprehensive 

program would notate this piece in the key of C. or Db. We made no attempt to do so here. 

We might expect that doing this for a capella vocal work would result in the score slowly 

drifting from the original key. The program is arranged so that this would be notated as a 

sudden shift in key by one half-step. 

" ! 



C R IT Ie AI, R Ell /l~1fI 122 

'W "1 .\ ,r' NE-'XT? I . L \. J l ~ . 

A iter thi s eXpositIOn, we ask the question flOW can we do this better? As it turns out, con st ru ct in g 

th e prog rams to actually demonstrate the concepts of the system were very enlightening as to 

how it all should have been done. We shall examine the system one piece at a time to g ive a 

preselltation as to how this task can be done better and what the weakest parts of the current 

implernentation are. 

PREDICTION AND FILTERING 

Siner' most of the computer time for the task is used by prediction and filtering , we mi gh t look 

to seE' how they might be irnproved. One could imagine a two-level search strategy somet hing 

lik '" th'" folluwing: 

First, a bank of wide-band (third-octave perhaps) filters is applied. If the energy in the output 

of the filter is too small, that frequency band is not analyzed further. A filter of this wide 

bandwidth will, in general, pass several sinllsoids at once. A pitch detector is applied to the 

output of the filter. There exist pitch detectors that will detect the pitch of the strongest 

sinusoidal component in the signal. This gives us the frequency of one of the sinusoids that is 

passed by the filter. 

Once we obtain this frequency, we may apply a more narrow band filter to ex actly this 

frequen cy as well as to integral multiples and integral fractions of this frequency, so as to 

capture the subharmonics and harmonics of the sinusoid. We may progressively narrow the 

band of th e filter until it is clear that no sinusoid is present at this frequency or until we get a 

good estill1(lte of its frequency. Once we know a sinusoid is present at a particular frequen cy 

and what bandWIdth filter is . necessary to extract it, we may sweep forward and backward in 
I 

time, searching for the true extent in time of this sinusoid. 

There (ll"e various complicatiOns that may occur which should be noted. First, another note 

may sound at some other time that would require us to make the filter much more narrow. We 

can tell this by noting that the output of the pitch detector suddenly becomes garbage when 

there is still plenty of energy at that frequency. 

If another sinusoid suddenly were to appear at very nearly that same frequency, we could notice 

the sudden phase change, which would manifest itself as a spike in the frequency trace. The 

total energy in the filter output would presumably increase, unless the sinusoids cancel each 

oth e r alit. They may also beat. 

A nother thing that may happen is that there may be vibrato on the sinusoid, which would 

imply that its . frequency is constantly changi ng. We may track the frequency by making the 

filt er frequ ency follow the frequency estimate from the pitch detector. This has stability 
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problems. We must introduce some smoothing so that instabilities do not occur. We Illllst force 

the filter to stay within certain bounds, such that excursions olltside these bounds will be take n 

to mean that the trace is nOisy and that either nothing is present or a more narrow filter must 

be used. Let us note that the problem of tracking the frequency of a single (monophonic) 

periodic signal is one that has been addressed extensively by the speech community. Some 

groups consider this to be a solved problem. We believe that there is still work to be done in 

. the case of a noisy environment, as we have in this case. Even if the piece is recorded in a 

very quiet room, there is always the "noise" consisting of the vibrations of the string's th at are 

not being played . 

We persist in using bandpass filters rather than OFT or other signal-processing techniques on 

the grounds that the filter gives us a great deal of flexibility, it can deal with reverberant 

environments, it preserves time information, and can handle continuously-changing' frequencies. 

This last feat cannot be performed with the OFT simply by looking for a peak at a certain 

place. Only a time-variant (adaptive, in this case) filter can deal successfully with vibrato. 

These p rocedures, we believe, can accomplish the low-level tasks well in somewhat less compute. 
time, providing much more power. 

To show how this might work, we have computed some .test cases using a 200 millisecond 

segment of a two-part piano piece. The notes being played during this segment are a D4 at 

about 294 Hz (3.4 milliseconds period) and an F4 at 349 Hz (2.86 milliseconds period). Figure 

62a shows the waveform of the signal itself. Figure 62b shows the discrete Fourier transform of 

the waveform. We can see the notes and their harmonics dearly (plus a lot of other stuff). 

Figu re 62c shows · the cepstrum of this waveform. As we might expect, the . cepstrum of this 

polyphonic piece is a mess. The peaks do not seem to correspond to the periods of anything ' 

that we know is present in the signal. Figure 62d shows the autocorrelation of the waveform, 

and figure 62e shows the optimum-comb applied at a place in the middle of the waveform 

segment. These last two plots show significant activity at multiples of the periods of the notes 

that are present. We notice that the peaks coincide at about 17 milliseconds. This is because D4 

and F4 form a minor third. This implies that their frequency ratio is about 5/6. Indeed, 5,;:3.4 
milliseconds is 17, and 6:;'2.86 milliseconds is about 17.16 milliseconds. 

The next figure, number 63, shows the same sequence of plots for the filtered waveform. The 

waveform in figure 63a was filtered with a 4th order Butterworth bandpass filter with 3dB 

pOints at 170 Hz and 230 Hz. The filtered waveform is shown in figure 63a. As can be seen 

from the successive plots, we seem to have isolated a signal at about 174 Hz. This is a 
subharmonic of the F4 which is probably caused by a lower string resonating. 

We can see that the amplitude of the filtered signal is somewhat low. This may be our only clue 

for eliminating this signal from consideration later. 

Figure 64 shows the original piano waveform filtered by a similar filter with 3dB points at 255 
Hz and 345 Hz. We see the 04 shining through on the SUbsequent plots. 
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FIGUF?E 62: Thi s 8nd the following three figures examine a 200 millisecond segment from the middle 
o f () two-part piano piece. Present at this time are a D4 at 294 Hz (3.4 milliseconds period) and an 
F{I 8t 349 Hz (2.86 milliseconds period). Figure 62a .shows the sound waveform itself. Figure 62b 
~; how s the discrete Fourier transform of this segment of sound. We can see the peaks 
corresponding to the notes quite clearl y. Figure 62c shows the cepstrum of this segment. As we 
rnig h t expect , the peaks in the cepstrumdo not seem to have any obvious meaning. Figure 62d 
'3 hows the autocorrelation of the music waveform. We can see peaks corresponding ·to the 
,;ubharmonics of the two notes present. At just over 17 milliseconds, the peaks line up. Tbis is 
beca use 04 and F4 form a minor third which implies a frequency ratio of nearly 5/6. In fact, 5*3.4 
rn illi ~;eco nd s is about 17 milliseconds and 6*2.86 milliseconds is about 17.16 milliseconds. Figure 
628 " haws the optimum-comb applied to this waveform. We can see that it corresponds greatly to 
t he inverse of the autocorrelation with the exception that the minimum at 17 milliseconds is more 
p ronounced than the maximum in the autocorrelation at 17 milliseconds. Neither is very prominant, 
compared to the other features in the plots. 
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FIGURE 63: The upper plot shows the waveform of figure 62a filtered by a 4th order Butterworth 
bandpass filter whose 3 dB points were at 170 Hz and 230 Hz. Again, figure 63b is the di screte 
Fourier transform of the waveform shOwn in figure ,63a, figure 63c is the cepstrum, figure 63d is 
the autocorrelation, and figure 63e is the optimum-comb. We can see that the autocorrelation and 
the optimum comb seem to have detected a frequency at about 5.8 milliseconds. This is about 174 
Hz, or an F3. This is a subharmonic of the F4 that is being played. It is quite likely that this 
represents a spurious resonance of one of the lower piano strings. 
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FIGURE 64: The upper plot shows the waveform of figure 62a filtered by a 4th order Butterworth 
bandpass filter whose 3 dB points were at 255 Hz and 345 Hz. Again, figure 64b is the discrete 
Fourier transform of the waveform shown in figure 64a, figure 64c is the cepstrum, figure 64d is 
the autocorrelation, and figure 64e is the optimum-comb. We can see that the autocorrelation and 
the opt imum comb seem to have detected a frequency at about 3.4 milliseconds. This corresponds 
well to the period of the 04 that is being played. 
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FIGURE 65: The upper plot shows the waveform of figure 62a filtered by a 4th order Butterworth 
bandpass filter whose 3 dB points were at 425 Hz and 575 Hz. Again, figure 65b is the discrete 
Fourier trans form of the waveform shown in figure 65a, figure 65c is the cepstrum, figure 65d is 
the autocorrelation, and figure 65e is the optimum.,.comb. We can see that the autocorrelation and 
the opti mum comb seem to have detected a frequency at about 1.7 milliseconds. This . corresponds 
well to the period of the second harmonic of the D2 that is being played. 
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Likewise with fl fS ure 65, the 3dB points are 125 Hz and 575 Hz. We get indications of a signal 

of period ahout 1.7 milliseconds, which corresponds roughly to the second harmonic of the D4. 

We hope that these examples show that the 2-level search procedure described above has 

potentia\' 

INTERMEDIA TE LEVEL PROCESSING 

One of the most important techniques that should be incorporated into the intermediate-level 

routines is the ability to consult the original sound waveform again to verify details, such as the 

e x act beginning and ending times of harmonics. Since the intermediate-level routines know 

what freqllencies are hypothesized to be present, they are optimally suited to determine how a 

sinusoid to be verified should be extracted. 

We could envision a system which formulated many hypotheses before beginning to eliminate ' 

them. The current approach is myopiC, in that it formulates a note hypothesis from the 

harmonic data a nd decides then and there whether to accept it. We should formulate the N 

strongest hypoth eses at each point in time and find a rating system to decide among them. 

These hypotheses then mig'ht serve as guides to returning to the original sound file and 

searching for missing harmonics. 

In the current programs, the filter bandwidth is a constant small size. This means that the 

timing information, such as when the harmonic starts, ends, and its exact amplitude envelope, is 

not terribly accurate. lIt has been greatly smoothed. If we used variable filter bandwidths, such 

that the widest filter was Llsed that successfully extracted the harmonic, some of this time 

reso llition might be regained . This would allow us to use this detailed time information in the 

intermediate-le vel processing. For instance, we could easily distinguish a spurious resonance by 

notin g that its onset corresponds to some time after the onset of another stronger note in the 

piece. We might be able to distinguish notes at octaves by the onset times. The detailed 

frequ ency variations will help with that also, especially since one is likely to have different 

vibratos. We might also think about using the detailed amplitude envelope of the harmonics. 

In plU CKed or struck insti'uments, the time of the initial maximum that each harmonic attains 

soon a fter the beginning of the note could be used as a cue that .these harmonics belong to the 

same nocE' . One mllst be a bit careful, in that generally the high harmonics of.a plucked string 

occur first, fo llowed by the fundamental. 

ON IDENTIFICATION 

It is theorized that the attack portion of the tone is a very important cue for human 

id entific a tion of the instrument. It is possible that by increasing the time resolution of the low­

lev el routin es, machine identification of the instrument will be possible. It is clear that 

identification, hum an or otherwise, cannot be done on the average amplitudes of the harmonics 

(l lo n e. for in stance, with two instruments playing at octaves, the harmonics over lap entirely , 
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such that each pair of harmonics will either add or cancel to some degree. This produces a 

completely unique spectrum. Either we must theorize that the human can recognize that this is 
the octave conjunction of two instruments, or that the human can somehow separate the 

individual contributions of the instruments, or we must admit the possibility of factors other 

than the harmonic amplitudes being 'used. In John Grey's dissertation [Grey 197'5], three cues 

for timbre were strongly suggested . One was the bandwidth of the signal, which roughly means 

the number of harmonics present. Another factor was the type of noise burst at the beginning 

of the tone. A third factor was roughly related to the overall attack time of the tones in 

question. Two of these three cues are in the attack portion of the tone. 
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CONCLUSIONS 

In this dissertation, we have examined the problem of the transcription of musical sOllnd by 
digital computer. A series of programs were developed using many signal-processing and 

artificial-intelligence techniques which accomplish the task of automatic musical transcription 

on a limited bClsis. Most of the limitations were introduced for convenience and for the purpose 

of fin ish illg the dissertation in a finite time. In fact, straightforward extensions of the 

techniq ues llsed in these programs would allow elimination of many of the restrictions. 

The overall plan of the system was as follows: First, an attempt was made to determine the 

l1arnwny of the piece through the use of a periodicity detection algorithm. This gave liS root 
frequ.encies whose multiples were guaranteed to represent the frequencies of all the sinusoids 

present in the signal. Narrow bandpass filters were then centered on these frequencies to try to 

extract each of the . harmonics of each of the tones present separately. A pitch detection 

alg'odthm WClS used at the output of each filter to determine if there was any periodicity at that 

frequency. A rating of each filter output was made which represents the quality of the filter 

Olltput . This rating was used to choose the "best'; signals to use to infer the notes. The notes 

were inferred by choosing high quality signals and then finding harmonics around them to 

form a complete note. The note hypotheses were compared and the best ones selected. A melodic 

grouping ::llgorithm divided the notes into upper and lower voices. The melodic information 

was then formatted and delivered to the manuscripting program which produced the final 

hard -copy score output. 

The restrictions imposed on the music were as follows: 

A II tones a re nearly periodic. This eliminates drums, gongs, and other percussive instruments. 

We have not dealt with the problem of detecting and tracking wide-band and inharmonic 
signals which these instruments represent. 

All fre'luencies are nearly piecewise-constant. This eliminates trills, Vibrato, and glissando. 

This was just so that we could use filters at fixed frequencies. The programs can be 

upgraded to use adaptive filters which chase the tone around as the pitch changes. 

The fundamental of a note will not ' overlay a harmonic of another note sounding 

simultaneollsly. We do not understand at this time aU the factors that are involved in 

human separation of notes with these characteristics. We do not understand why people 

"fuse" the harmonics of an instrument into a single percept. but distinguish two separate 

instruments which are playing in unison. Perhaps if the frequencies and attacks were 

exactly synchronized. people could not so distinguish them. We must do further 

experiments in human perception to gain insight into these processes. 

The piece contains no more than two voices. This was done for convenience. There is no 
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inherent limitation which necessitates this. The melodic grouping algorithm. however. is 
not set up to track voices which cross. 

Other limitations. Notes must be longer than 80 milliseconds in duration. Thi.s is because we 

distinguish between transient response from the bandpass filters and signals by 

assuming that the transient response will die out in less than 80 milliseconds. The use of 

variable-width filterscari help distinguish this better. We also require that the 

fundamental frequency of a tone be present. This is because we do not have a 

convenient way of assig'ning a rating to an entire note right now. Presumably such a 

measure could be made. For the same reason, we require that the harmonics be dense, 
that is, have no missing harmonics, unless all the even harmonics are missing, as in the 
'case of the clarinet. 

With these restrictions in mind, examples were processed through the programs with relatively 

good results. The computer usage was enormous. This system Can hardly be called practic.al at 
this time. 

We feel the main contribution of this thesis is the knowledge that this task can be done by 

computer and it seems likely that it can be advanced to a relatively hig'h level by simple 
extensions of the procedures developed here. 
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APPENDICES 

APPENDIX A: 
THE HETERODYNE FILTER 

INTRODUCTION 

This appendix is devoted to implementation details and a critical evaluation of the heterodyne 

filter. The filter has been run on a series of synthetic tones which demonstrate its powers and 

its weaknesses well. For implementation details, we have chosen ALGOL as a vehicle for 

communication of algorithms. This is not necessarily directly useable on everyone's system, but 

we hope the implementation will be a simple matter of conversion. 

A CRITICAL TEST 

To ernpirically test the performance of the filter, we have chosen a periodic waveform with 

harmonics such that each harmonic is some fraction of the previous harmonic. We have placed 

an overall 3mplitucle envelope on the test signal that consists of a line segment for the attack 

and constant amplitude for the steady-state. It is interesting to vary the time of the attack and 

see how the output of the filter .behaves. In each of the cases shown, three smoothings were ' 

applied, each smoothing done by averaging over about one period of the signal. We present the 

results of these tests in figures A 1 through A 12. All of the figures except A6 have each 

harmonic 70 percent of the amplitude of the previous harmonic. Figure A6 has each harmonic 

50 percent of the previous harmonic. We experiment with a 505 Hz signal and a 101 Hz signal. 

The first two fi gures, A 1 and A2, show simple cases where the attack time is several periods 

long- In 1\ I, th e attack time is 25 periods, and in A2, the attack time is 10 periods. In each 

figure, there are four plots. The upper left plot is a perspective drawing showing the 

amplitudes of all the harmonics as derived by the heterodyne filter. In each case, we analysed 

up to the IOlh harrnonic. The first harmonic is in the rear, the lOth harmonic is in the fore. The 

upper right plot in each figure is a similar plot for the frequenCies of the harmonics, except 

that the first harmonic is in the front and the 10th harmonic is in the rear. The lower leftplot 

is a pair of graphs showing the amplitude (upper) and frequency (lower) contours for just the 

first hat'monic (fundamental) by itself. The lower right pair of graphs is the same thing for the 

IOlh harmonic. This is so that we can see exactly when the frequency trace stabilizes. In general, 

it tak es a few periods before the frequency curve settles down. There is some confusion at the 

end of each plot due to the edge effects. For any practical situation, the tone should · be 

surrounded by silence of length at least -4 periods on each side. 
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FIGURE Al. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 505 Hz signal with a 50 mil lise'cond linear attack on each 11armonic. Each harmonic is 
70% of the amplitude of the previous harmonic. The upper left figure shows a perspective plot of 

'the amplitudes of the harmonics as determined by the heterodyne filter. The upper right plot 
shows the frequencies of the harmonics. The lower left pair of plots show the amplitude and 
frequency of the first harmonic, the lower right pair show the amplitude and frequency of the 10th 
harmonic. There is error in the frequency plots around the attack and the ending, but the 
amplitude plots seem to be accurate except for a slight rounding of the ends of each line segment. 
If we set the amplitude of the fundamental to 1.0, then the harmonic amplitudes are as follows: 1.0, 
0.7, 0.49, 0.343, 0.240, 0.168, 0.118, 0.082, 0.058, 0.040 These plots were generated using a 
program which was written by John Grey for his dissertation. 
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FIGURE A2. This shows the output of the heterodyne filter for a synthesized input signal w hich 
co nsists of a 100 Hz signal with a 100 millisecond linear attack on each harmonic. Each harmoni c is 
70~~ of the amplitude of the previous harmonic. 
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FIGURE A3. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 100 Hz signal with a 50 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. Since this is a slightly faster attack than the 
previous figure, we see the attack portion of the frequency curves is somewhat more distorted. 
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FIGURE A4. This shows the output of the heterodyne filter for a synthesized input signal whi ch 
consist s of a 505 Hz signal with a 10 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. The attack portion of the tone lasts only 5 per iods, 
which is quite fast. As we would expect, the. frequency trace for the first few periods is not 
actur ate. 
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FIGURE A5. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 100 Hz signal with a 10 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. The attack portion of the tone lasts only 1 period, 
which is extremely fast. The heterodyne filter cannot track the frequency during the attack 
portion and throughout some of the steady-state portion. The amplitude curves, however, are not 
grossly in error. 
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FIGURE A6. This shows the output of the heterodyne filter for a synthesized input signal which 
consi ,.ts of a 505 Hz signal with a 10 millisecond linear attack On each harmonic . . Each harmonic is 
50% of the amplitude of the previous harmonic. This case is similar to figure A4, but the higher 
harmonics are much weaker. In fact, the 10th harmonic is so weak that its frequency cannot be 
successfully tracked. The plots are correct, however, up to the 9th harmonic. The relative 
<tI"llplituJes of the harmonics in this case are as follows, setting the amplitude of the first harmonic 
to 1 for convenience: 1.0, 0.5, 0.25, 0.125, 0.063, 0.031, 0.016, 0.008, 0.004, 0.002. Thus, the 
amp litude of the 10th harmonic is only 1/20th of the amplitude of the 10th harmonic in the 
prev ious figures. 
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FIGURE A7. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 500 Hz signal with a 10 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 500 
Hz to 505 Hz over the duration of the tone. This is a 1% change, less than a quarter-step, Even in 
this case, the heterodyne filter seems to track acceptably. 
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FIGURE A8. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 100 Hz signal with a 50 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 100 
Hz to 101 Hz over the duration of the tone. This is a 1% change, less than a quarter-step. As in 
the previous figure, the heterodyne filter seems to track acceptably. 
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FIGURE A9. This shows the output of the heterodyne filter for a synthes ized input signal which 
consists of a 500 Hz signal with a 10 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amp litude of the previous harmonic. Here we slew the frequency of the note from 500 
Hz to 510 Hz over the duration of the tone. This is a 2% change, slightly less than a quarter-step. 
Th is seems to be about the limit of the allowable frequency change. Some of the frequency traces 
for the higher harmonics are not tracking properly_ 
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FIGURE AlO. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 100 Hz signal with a 50 millisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 100 

. Hz to 102 Hz over the duration of the tone. This is a 2% change, slightly less than a quarter-step. 
This seems to be about the limit of the allowable frequency change. Some of the frequency traces 
for the higher harmonics are not tracking properly. 
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FIGURE All. This shows the output of the heterodyne filter for a synthesized input signal which 
consists of a 500 Hz signal with a 10 mi llisecond linear attack on each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic, Here we slew the frequency of the note from 500 
Hz to 525 Hz over the duration of the tone. This is a 5% change, almost a half-step. This exceeds 
the bounds that the heterodyne filter can accept. Note that at the 10th harmonic, it drops down 
and starts tracking the 9th harmonic. 
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FIGURE A12. This shows the output of the heterodyne filter for a synthesized input signal whi ch 
consists of a 100 Hz signal with a 50 millisecond linear attack On each harmonic. Each harmonic is 
70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 100 
Hz to 105 Hz over the duration of the tone. This is a 5% change, almost a half-step. This exceeds 
the bounds that the heterodyne filter can accept. Note that at the 10th harmonic, it drops down 
and st art s tracking the 9th harmonic. Notice that amplitude distortion is beginning also. 
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In figures A g and A 4, we shorten the attack time to exactly 5 periods. This causes the 

frequency trace to lag behind the amplitude curve. In figure AS, we see that for the 10th 

harmonic, the frequency curve is about 25 milliseconds late in stabiliZing. In figure A 5, the 

attack time has been shortened to one period. This is an extreme case and causes the freq uency 

trace to be greatly in error, especially in the higher harmonics. In figure A6, we see the case 

where each harmonic is only 50 percent as great as the previous harmonic. Here, the lOth 
harmonic.is so weak that it cannot be traced at all. It is a typical form of behavior for the 

frequency curve to drop down to the frequency of the next lower harmonic when the amplitude 

of the harmonic is too weak. 

In figures A 7 through A 12, we experiment with changing the frequency of the tone while the 

analysis proceeds. Figures A 7 and A8 show a I percent change through the note, figures A 9 

and A 10 show a 2 percent change, and figures A II and A 12 show a 5 percent change. We can 

see the failure start to set in in the 10th harmonics with a 2 percent change. With a 5 percent 

ch ange, t he top several harmonics do not track properly, especially with the lower tone. When 

the freq uency deviates this far, we can no longer guarantee absence of "leakage" between 

adjacent harmonics. 

IMPLEMENT A TION 

There are several things that can be done to simplify the computation of the heterodyne filter. 
The first is to use "sliding" summations rather than computing the entire summation at each 

point. This is an old and well known trick that has great use here. The only problem is the 

accumulation of roundoff error. Although not. included in the program that follows, one feature 

that was included in our own program was resetting all the sums every 1000 sampfes. 

In converting the phase angle at each sample into a continuous phase function, it is somewhat 

difficult in the presence of noise to avoid occaisional jumps of multiples of n. Schafer [1969J 

. gave an algorithm for "unwrappi~g" the phase in this manner. Unfortunately, his algorithm is 

not effective in the presence of large amounts of noise. Our approach has been to use the angle 

sum and difference formulae to compute not the angle, but the difference of the ang'le with the 

angle at the previous sample point. This works as follows: 
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(AU 

IA2) co s ( (/1 ) <-
no 

b na 

(A3) Sill U'~el ~ sin (¢ ) COS (¢ ) - COS (¢ ) sin (¢ ) 
na n,lX-l na n,a-l 

(A4 ) 

(AS) b..e f- tan -1 (8 i n (6.e)) 
COS (~eJ 

Where a nol is the real part of the heterodyne filter output at the a 1h 

point, for the nth harmonic, as shown in equation (21) in the text, 

b nol is the imaginary part of the heterodyne filter output at the a 1h 

point, for the nth harmonic, as shown in equation (22) in the text, 

enol is the phase angle at the a"' point, for the nth harmonic, subject to 

the initial conditions 8n0=6, 

rPnol is the principal value of the phase angle, enO(.l at the a 1h point, for 

the nth harmonic, and 

~e is (enol-en 01-1)' t he difference of the phase angles of this point , . 
and the previous point, as computed by the sine sum' and 
difference formulae. 

This mil)' look lik e a succession of tautologies, but the result is a nice continuous phase with 

few disconlinuities. The only jumps occur where the amplitude goes to near zero, where the 

phase is tlwri just the phase of the noise, which is, of course, random. 

J; . 
If This method giv es, in genera.l, a much smoother phase than Schafer's method. 



147 HETERODYNE FILTER 

A HETERODYNE FILTER PROGRAM 

BOOLEAN PROCEDURE HET(INPUT ,AMP,FREQ,CLOCK,FUNO,HARMONIC, 
AVWIDTH,NSMOOTHS,N,MJ; 

REFERENCE REAL ARRAY INPUT,AMP,FREQ; 
VALUE REAL CLOCK,FUNO; 
VALUE INTEGER HARMONIC,AVWIDTH,NSMOOTHS,N; 
REFERENCE INTEGER M; 
BEGIN 

COMMENT This program takes an array of sound samples in INPUT of length N 

(INPUT[J:NJ), the fundamental frequency of the tone, FUND, the sampling rate in samples per 

second, CLOCK, the number of the harmonic under analysis, HARMONIC, the number of 

smoothings, NSMOOTHS, the width of the window used to compute the slope of the phase, 

A VWIDTH, and returns the amplitude of the harmonic as a function of time, AMP, and the 

freque,ncy of the harmonic as a function of time, FRE~ and the number of valid points in 

A MP and FRE~ M. M is set to the input data length, N, minus the length of the period of the 

' fundamental frequency in samples. A typical call might be 

HET(I,A,F,20000, I 55,3,25,3,10000,M). This would take from array I, put the' amplitude in A, 

the frequency in F, sampling rate would be 20000 samples per second, the fundamental 

frequency would be 155 Hz" we would analyse for the 3rd harmonic (465 Hz.), would average 

over 25 points for the frequency curve, would do 3 smoothings, would take 10000 points (.5 

seconds) out of I, and would place the number of output points in M; 

INTEGER PERIOD; 
REAL DANGLE,ANGLE,CS,SN,LCS,L~N; 
REAL SUMT,SUMT2,SUMF,SUMFT,TIME; 
REAL TIMINC,TSAMP,HFREQ; 
REAL CSUM,SSUM, TEMP,PI,TWOPI; 
REAL ARRAY FSAVE,FTSAVE[1:AVWIDTH1,SINTAB[0:S000J; 
INTEGER I,J,K,L,INDEX; 
LABEL EXIT; 
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CO M tvl ~ r-"'/T ;\ t flrs-t, we rnerely set lip some constants and then load the sine table. This table 

could, of course, be set up once and for all beforehand, rather than be set lip each time. 

Further, tIlE' tCible could be set lip using the sine recursion formula at one multiply per point 

rather than calling the sine routine (generally 7 multiplies); 

PERIOO~CLOCK/FUNO; 
BEGIN 

REAL ARRAY SNSAVE,CSSAVE[l:PERIOO+IJ; 
FUNO~CLOCK/PERIOO; 
PI~3.141592G536; 
HJOP I f-2*P I ; 
ANGLEf-0; 
DANGLE~50Be*HARMONIC*FUND/CLOCK; 
FOR I~B STEP 1 UNTIL 5BBB DO 

SINTAB[IJ~SIN(TWOPI*I/5BBB); 
COMMENT The s ine tab le shou ld be computed beforehand, 

just once for a l l the harmonics: 
CSUr1~e ; 
SSUM<-0 ; 

.1 F PER I OO+AVW I DTH<N THEN 
BEGIN 

HET<-TRUE: 
GO TO EXIT; 

END; 
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COM M [NT Here we actually do the heterodyne filter. It consists of multiplying the inpu t 

signal by the sine and the cosine of the frequency of analysis (HARMONIC:::FUND) and 

averaging over one period of the fundamental frequency. This is done by a sliding average. 

SN and CS represent the SINE and COSINE at the expecte'd frequency of the harmonic 

(HARMONIC,;,FUND), We keepthe sum of the input stream times the SINE in SSUM, and 

the sum of the input stream times the COSINE in CSUM. SNSA VE and CSSA VE are just to 

avoid doing a multiply to update SSUM and CSUM.; 

J~l; 
FOR I~l STEP 1 UNTIL N DO 
BEGIN 

INoEX~ANGLE; 
. SN~SINTAB[INDEX]; 
INDEX~INDEX+125e; 
IF INDEX~5eee THEN INoEX~INoEX-5eee; 
CS~SINTAB[INDEX]; 
ANGLE~ANGLE+DANGLE; 
IF ANGLE~5eee.e THEN ANGLE~ANGLE-5eee.e; 
IF I>PERIOD THEN 
BEGIN 

CSUM~CSUM-CSSAVE[Jl ; 
SSUM~SSUM-SNSAVE[JJ; 
COMMENT Subtract off the point past the 

end of the window. This saves doing 
the entire summation each time; 

END; 
CSSAVE[JJ~INPUT[I)*CS; 
CSUM~CSUM+CSSAVE[J); 
SNSAVE[J]~INPUT[IJ*SN; 
SSUM~SSUM+SNSAVE[J]; 
IF I>PERIOo THEN 
BEGIN 

AMP[I-PERIOD]~CSUM; 
FREQ[I-PERIOoJ~SSUM; 

END; 
J~J+l ; 
IF J>PERIOD THEN J~l; 

END; 
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COM ~vl EN'!' Nuw we smooth the curves by averaging over a window around the period of the 

fundamental. '['his places a new zero of translnission at each harmonic except the one und e r 

analysis. Gl'IH.' rally. 'three smoothings are recommended. Quite often. unacceptable ripple will 

be present in the output without these smoothings. These smoothings are to be preferred over a 

standard low-pass filter because they place an explicit zero of transmission at the other 

harmonics. The variable L below denotes the width of the average. It starts out at 0 and grows 

to LENGTH. This means that it takes one period for the average to get started, which means 

that YOll will not get zeros of transmission at the other harmonics until the smoother has a 

chance to "warm up". If you have N smoothings. you must wait N periods for good results. 

Each tone to be analysed should have several periods of silence around it to get these filters 

sta rted; 

M.-N --PER 100; 
FOR K~l STEP 1 UNTIL NSMOOTHS 00 
BEGIN 

END; 

LENGTH~PERIOD+IK MOD 31-1; 
COMMENT We fi Iter at the period, the period 

plus one sample, and the period minus 
one sample. This is a "shotgun" approach 
to help when th~ frequency is 51 ightly 
different from what wa expect it to be; 

J~I; 
L~a; 
SSUM~a; 
CSUM~a; 
FOR 1~1 STEP 1 UNTIL M 00 
BEGIN 

IF I>LENGTH THEN 
BEGIN 

SSUM~SSUM-SNSAVE[J]; 
CSUM~CSUM-CSSAVE[J]; 

END 
ELSE L~l.:+l; 
COMMENT L is the width of the averaging 

interval. IsLsLENGTH; 
SSUM~SSUM+AMP(I); 
CSUM~CSUM+FREQ[Il ; 
SNSAVE[J)~AMP[I); 

CSSAVE[J]~FREQ[I) ; 
COMMENT We must save copies of the 

inputs to the smoothing routines 
because we overwrite these 
quantities in the next steps; 

AMP [I ) ~SSUM/L; 
FREQ [ I 1 ~CSUM IL; 
J~J+l ; 
IF J>LENGTH THEN J~l; 

END; 
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COM MENT Now we convert to magnitude and phase form. To assure that the phase remains 

continuous, even during noisy parts, we compute the change in the angle by the difference-of­

sines formula. We keep around the SINE and COSINE from the previous step and produce 

the angle increment by the arctangent of the difference in angle from the last sample to this 

one. Here we assume a procedure of value REAL which takes the arctangent of a number 

which is a fraction. We assume, then, that ATAN(NUM/DEN)=ATAN2(NUM,DEN), except 

that the case DEN=O is handled properly in ATAN2 (that is, it returns plus or minus n/2, 

depending on the quadrant). We enter with AMP and FREQ containing the quadrature 

components of the harmonic. When we exit this section, AMP contains the amplitude of the 

harmon ic and FREQcontains the phase of the harmonic.; 

LSN~AMP [1] ; 
LCS~FREQ [1) ; 
AMP[l]~SQRT{LSNt2+LCSt2}; 
LSN~LSN/AMP [1] ; 
LCS~LCS/AMP[ll; 
COMMENT LCS and LSN wi I I be the cosine and sine 

of the phase angle at the previous sample; 
FREQ[l)~ATAN2{LSN,LCS}; 
FOR I~2 STEP 1 UNTIL M 00 
BEGIN 

END; 

SN~AMP[I]; 
CS~FREQ [I] ; 
AMP[I)~SQRT(SNt2+CSt2}; 
SN~SN/AMP [I); 
CS~CS/AMP[I); 
COMMENT This makes SN and CS the sine and 

cosine of the phase angle at this point; 
NUM~SN*LCS-CS*LSN; 
DEN~CS*LCS+SN*LSN; 
COMMENT NUM and DEN are the sine and cosine 

respect i ve I y of the difference between 
the phase angle of the previous sample 
and the phase angle of this sample, as 
computed by the angle sum and 
difference formulae; 

FREQ[I)~FREQ[I-l]+ATAN2{NUM,DEN}; 
LCS~CS; 
LSN~SN; 



• • •••• _ . __ _ • _ __ ___ ••• k _ • •• • •• • • •••• • • • • •• •• • •• ••• • ' " ' • • ' . _ • • ••• _ 

APPENDIX A 152 

COMM ENT Now we compute the frequency from the phase by getting the slope of the phase 

We do this, adding some additional smoothing in the process, by computing a least-squares fit 

of a straight line to the phase and using the slope of this line at each point as the difference of 

the actual frequency and the expected frequency of the harmonic. Again, the sums are 

computed by sliding av~rages.; 

EXI T: 
END; . 

SUMT ... ej 
SUMT2 ... e; 
SUMF ... ej 
SUMFT ... ej 
TIME ... ej 
TIMINC ... AVWIDTH/CLOCKj 
TSAMP ... I/CLOCKj 
HFREO ... HARMONIC*FUND; 
J ... 1.; 
L ... e: 
FOR 1 ... 1 STEP 1 UNTIL M DO 
BEGIN 

IF I>AVWIDTH THEN 
BEGIN 

TEMPl~TIME-TIMINC: 
SUMT ... SUMT + TEMP1 j 
SUMT2 ... SUMT2+TEMPlt2: 
SUMF~SUMF-FSAVE[JJj 
SUMFT~SUMFT-FTSAVE[JJj 

END ELSE L ... L+l; 
SUMT ... SUMT+TIME; 
SUMT2 ... SUMT2+TIMEt2j 
SUMF ... SUMF+FREO[IJj 
TEMPl~FREQ[IJ*TIMEj 
SUMFT ... SUMFT+TEMP1; 
FSAVE[J) ... FREQ[IJj 
FTSAVE[JJ ... TIMEl; 
TIME ... TIME+TSAMP: 
IF 1$2 THEN FREQ[IJ ... HFREQ 
ELSE FREQ[I) ... HFREQ+ 

(L*SUMFT-SUMT*SUMFl/ 
((L*SUMT2-SUMTt2l*TWOPIlj 

J ... J+l; 
IF J>AVWIDTH THEN J ... 1; 

END: 
END; , 
HET ... FALSE: 
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APPENDIX B: 
ON DESIGNING DIGITAL FILTERS 

INTRODUCTION 

During' the course of this thesis, digital filters of many different varieties were used. Since the 

basis of the low-level processing is the bandpass filter, it was important to have a way of 

designing digital bandpass filters very quickly. The only closed-form solutions for filter 

coefficients that are currently known are the classical analog designs, like the Chebychev, 

Butterworth, Lagrange, Bessel, and others. In this method, we first desig'n a low-pass filter, and 

then transform it to get high-pass, bandpass, or bandstop filters. We chose to do this 
transformation in the continuous domain. The analog filter is then transformed to the digital 

domain by use of the bilinear transform. Of course, the 3dB frequenCies must have been 
alread y 'warped' before transformation to digital. 

PROCEDURE 

We, of course, will not attempt to review all of analog circuit design theory here. Two 

appropriate references are Guillemin [1957] or Karni [I966]. Neither will we review the 

bilinear transform for the generation of discrete filters from continuous. For this information, 

see Oppenheim and Schafer [1975] or Rabiner and Gold [1975]. What we would like to discuss 

are the details of what we feel to be a convenient, stable technique for numerically evaluating 

the coefficients. A II of the processing is done in factored form, that is, all the roots are kept 

separately as complex numbers. For an Nth order filter, we will have N such numbers. When we 

go to bandpass or bandstop, there will then be 2N such numbers, for each root in the original 
low-pass design will generate two roots in the bandpass or bandstop case .. 

Each of these filters accept the following as design information: the frequency of the 3dB point 
(in the bandpass and bandstop cases, the frequenCies of both SdB points are reqUired), the 
order of the filter (in bandpass and bandstop cases, this number will be doubled), and the type 

of the filter. Currently, only Butterworth and Chebychev at .5 dB ripple, I dB ripple, 2dB 
ripple .and 3dB ripple are allowed. It is a simple matter to add other kinds. 

LOWPASS AND HIGHPASS 

These are the Simplest cases. For the lowpass, we just take the continuous filter design directly. 

For the highpass, we merely invert the roots. This is simply done by dividing the conjugate of 

the root by its magnitude squared. Remembering that it is highpass, we go directly to the digital 

conversion . Both filters are designed with their 3dB point at 1. They must be scaled to the 

proper frequency. This is done simply by multiplying all the roots by that frequency. 
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BANDPASS AND BANDSTOP 

These are fhe most interesting· cases, for each original root must create two roots in the 

tran$formed filter. This is done by means of the following· transformations: 

(6
2 +w!) 

(81) p ... 
6 

for the bandpass case and for the bandstop case: 

(82) 

. Where P is the complex frequency variable of the original low-pass 
design. 

S is the complex frequency variable of the transformed filter. 

We is the geometric mean of the 3dB frequencies of the desired 

bandpass or bandstop filter 

We can see what this does to each pole of the original design by just substituting the complex 

frequency of the original pole as P in the above equations and solving for s; 

A + -V A2
-4W! A - -J A2

-4W! 
(83) 6 = 

2 2 

1 + -J 1-4A
2
W! 1 - -J 1-4A

2W! 
(84) s = 

2 2 

Where A is the complex frequency of one of the original low-pass poles. 

Again, (B3) is for the bandpass case and (B4) is for the bandstop case. To compute these 

numbers, we may use arctangentsand do it in magnitude-angle formulation, but we have found 

that the Cartesian coordinates give slightly more accuracy. To perform the complex square root, 

all we need ' to do is compute the square root of the length of A2_4w(J2 and compute the SINE 

and COSINE of one-half the angle of A2_4w,t This can be done as follows: 



(85) 

(86) 

(87) 
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ex 
C ~ .j ex 2+{32 

C2 ~ -J1;C 

S2 ~ sgn({3) -J1 2C 

Where ex is the real part of A2_4wl}' 

{3 is the imaginary part of A2_4w,/, 

C is then the cosine of the angle of A2_4w,/, 

C2 is then the cosine of half the angle of A2-4wr/' 

S2 is then the sine of half the angle of A2_4w02, 

k is the magnitude of the square root of A 2_4wo 2. 

sgn ({3) is +1 if {3~0 and -1 if {3<0 

This is shown for the bandpass case, but may also be done for the bandstop case similarly. 

TRANSFORMATION TO DISCRETE 

A fter the transformation to the proper kind of filter, we may inspect for stability just by 

examining the real parts of the filter. We have found the filters designed this way all have 

negative real parts as high as 20th order. 

We then group the conjugate poles together for lump-transformation to a digital second-order 

section . The remaining real pole, if any; will be transformed into a first-order section . We can 

also order the poles according to Qfor what is hoped to produce minimum roundoff error. 

A fter the transformation, we can normalize the response so that certain frequencies have a 
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rnagnitude transfer function of 1.0. For the low-pass and bandstop cases, we wish 0 frequency to 

be passed with gain 1.0. For the high-pass case, it is infinite frequency (7f in discrete domain). 

For the bandpass case, it is We, the geometric mean of the 3dB frequencies. We can get this 

scale factor by computing it as we go along, or by computing it at the end of all the 

transformations. It is simple to compute at the end and is guaranteed to give the correct results, 

so this is what was llsed in ourprog-ram. We merely predict the transfer function at the critical 

frequency and multiply the first filter section input terms by the inverse of the predicted 

transfer function . 

This cornpletes the design of the filter . It is realized in cascade form as the conjunction of many 

second-order sections and possibly a single first-order section. 

1 
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